In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement compo...There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced.展开更多
In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation...In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.展开更多
A three-dimensional finite element analysis of process-induced residual stress in resin transfer molding (RTM) process is presented. The finite element method (FEM) was employed to solve the coupled equations involved...A three-dimensional finite element analysis of process-induced residual stress in resin transfer molding (RTM) process is presented. The finite element method (FEM) was employed to solve the coupled equations involved in the transient heat transfer and the cure kinetics of the resin, and the distributions of internal temperature and cure degree of the composite at any instant time were obtained. The self-consistent field micro-mechanics model was used to predict the cure-dependent mechanical properties of the composites. Thermal expansion and cure shrinkage were included in the analysis. The thermo-elastic mechanical governing equations were solved using the incremental stress-strain relationship based FEM and the residual stress development was predicted. The present results were validated by the comparisons with the pertinent literature. The numerical example of a half cylinder was presented. The results show that it is necessary to carry out the three-dimensional analysis due to the complex distributions of temperatures, cure degrees and process-induced stress for thick parts, which can be predicted at any point within composite structures in the present analysis.展开更多
Based on the interphase layer model and the spring layer model, an improved interface model was developed to evaluate the interfacial shear strength of Titanium matrix composites(TMCs) and to analyze the effects of va...Based on the interphase layer model and the spring layer model, an improved interface model was developed to evaluate the interfacial shear strength of Titanium matrix composites(TMCs) and to analyze the effects of various parameters on the interfacial properties. The results showed that the improved interface model is more suitable for calculating the interfacial properties of SiC fiber reinforced titanium matrix composites. The interfacial shear strength of SiC/Timetal-834 predicted is 500 MPa. In addition, in order to better understand the interfacial properties of composites, some push out phenomenon were analyzed.展开更多
In the previous papers, a high performance sparse static solver with two-level unrolling based on a cell-sparse storage scheme was reported. Although the solver reaches quite a high efficiency for a big percentage of ...In the previous papers, a high performance sparse static solver with two-level unrolling based on a cell-sparse storage scheme was reported. Although the solver reaches quite a high efficiency for a big percentage of finite element analysis benchmark tests, the MFLOPS (million floating operations per second) of LDL^T factorization of benchmark tests vary on a Dell Pentium IV 850 MHz machine from 100 to 456 depending on the average size of the super-equations, i.e., on the average depth of unrolling. In this paper, a new sparse static solver with two-level unrolling that employs the concept of master-equations and searches for an appropriate depths of unrolling is proposed. The new solver provides higher MFLOPS for LDL^T factorization of benchmark tests, and therefore speeds up the solution process.展开更多
In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies....In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.展开更多
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, t...In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.展开更多
An?ultrasonic compound horn is designed and manufactured, and the horn is analyzed by wave equation, finite element method and test. The modal frequencies and frequencies of the first and second longitudinal vibration...An?ultrasonic compound horn is designed and manufactured, and the horn is analyzed by wave equation, finite element method and test. The modal frequencies and frequencies of the first and second longitudinal vibration of the horn are obtained by the finite element analysis. The horn is made and modal testing is carried out. The modal frequencies of the first and second longitudinal vibration are obtained respectively. The test results are in good agreement with the theoretical calculation. Experimental results show the maximum amplitude of the horn can reach 9?nm with applied excitation voltage of amplitude 7?V and frequency 21,450?Hz, when the amplitude of voltage increases?to 80?V, the horn of maximum amplitude reaches?23 μm. The maximum amplitude of the horn is approximately proportional to the amplitude of excitation voltage. The horn has the characteristics of high sensitivity and large amplitude, and can be used in ultrasonic machining and other fields.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation locatio...The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.展开更多
Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams sh...Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.展开更多
This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical res...This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical results indicate that unique two-times heating process is gradually experienced in the area between two adjacent grating stripes. However, there is a little change for the temperature field along the depth direction for the diamond film due to its great thermal conductivity. It further finds that the thickness of the diamond film has a significant influence on the temperature field in diamond/ZnSe system. The results are useful for the application of laser-induced TTG technique in film/substrate system.展开更多
Preventing subsidence of intervertebral cages in posterior lumbar interbody fusion (PLIF) requires understanding its mechanism, which is yet to be done. We aimed to describe the mechanism of intervertebral cage subsid...Preventing subsidence of intervertebral cages in posterior lumbar interbody fusion (PLIF) requires understanding its mechanism, which is yet to be done. We aimed to describe the mechanism of intervertebral cage subsidence by using finite element analysis through simulation of the osteoporotic vertebral bodies of an elderly woman. The data from computed tomography scans of L2-L5 vertebrae in a 72-year-old woman with osteoporosis were used to create 2 FE models: one not simulating implant placement (LS-INT) and one simulating L3/4 PLIF using polyetheretherketone (PEEK) cages (LS-PEEK). Loads and moments simulating the living body were applied to these models, and the following analyses were performed: 1) Drucker-Prager equivalent stress distribution at the cage contact surfaces;2) the distribution of damage elements in L2-L5 during incremental loading;and 3) the distribution of equivalent plastic strain at the cage contact surfaces. In analysis 1, the Drucker-Prager equivalent stress on the L3 and L4 vertebral endplates was greater for LS-PEEK than for LS-INT under all loading conditions and tended to be particularly concentrated at the contact surfaces. In analysis 2, compared with LS-INT, LS-PEEK showed more damage elements along the bone around the cages in the L3 vertebral body posterior to the cage contact surfaces, followed by the area of the L4 vertebral body posterior to the cage contact surfaces. In analysis 3, in the L3 inferior surface in LS-PEEK the distribution of equivalent plastic strain was visualized as gradually expanding along the cages from the area posterior to the cages to the area anterior to them with increased loading. These analyses suggested that in PLIF for osteoporotic vertebral bodies, the localized stress concentration generated by the use of PEEK cages may cause accumulation of microscopic damage in the fragile osteoporotic vertebral bodies around the cages, which may result in cage subsidence.展开更多
<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental impla...<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental implant-abutment systems, using the finite element method analysis. Tensile analyses were performed to simulate different axial and obliquous masticatory loads. The influence of the variations in the contouring conditions of the interfaces was analyzed to weigh the osseointegration with linear and non-linear cases, by means of a parametric design. The geometry selected to place the prostheses was a jaw section, considering the properties of the set of cortical and trabecular bones. The results show that for non-linear contour conditions, the stress presents smaller value distributions and signals a different place in the screw-implant interface as the factor of the greater weight in this study. The location indicated that von Mises stress concentrations are not exclusive to the contact regions studied, moving to an area that is not in direct contact with the non-linear contact interfaces. In addition, the direction of load with an angle of 15 degrees presented the highest values of von Mises stress.</span> </p>展开更多
The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simpl...The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).展开更多
In order to improve the office paper feeder design, and eliminate paper jam fault in running office equipment, the static deformation and dynamic response of paper were analyzed by use of the Finite Element Method (FE...In order to improve the office paper feeder design, and eliminate paper jam fault in running office equipment, the static deformation and dynamic response of paper were analyzed by use of the Finite Element Method (FEM). In the analysis, the three nodes mangle plate and shell element were employed, and finite element incremental formulations were derived on the basis of Updated Lagrangian (U.L) description. The newmark method was used to analyze the transient response of paper. All the results calculated in this article coincide with those by experiments.展开更多
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
文摘There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced.
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
文摘In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory,the Poisson coupling between the fluid and the pipeline was studied and a fourteen-equation mathematical model of fluid-structure interaction(FSI)was developed.Then,the transfer matrix method(TMM)was used to calculate the modal frequency,modal shape and frequency response.The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape.Finally,the influence on the response spectrum of different damping ratios was studied and the results show that the natural frequency under different damping ratios has changed little but there is a big difference for the pressure spectrum.With the decreasing of damping ratio,the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent.Therefore the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.The results provide references for the theory research of FSI in the transient process.
基金the National Natural Science Foundation of China(Grant No.10502016)Development Program for Outstanding Young Teachers in Harbin Institute of Technology(Grant No.HITQNJS.2006.020)
文摘A three-dimensional finite element analysis of process-induced residual stress in resin transfer molding (RTM) process is presented. The finite element method (FEM) was employed to solve the coupled equations involved in the transient heat transfer and the cure kinetics of the resin, and the distributions of internal temperature and cure degree of the composite at any instant time were obtained. The self-consistent field micro-mechanics model was used to predict the cure-dependent mechanical properties of the composites. Thermal expansion and cure shrinkage were included in the analysis. The thermo-elastic mechanical governing equations were solved using the incremental stress-strain relationship based FEM and the residual stress development was predicted. The present results were validated by the comparisons with the pertinent literature. The numerical example of a half cylinder was presented. The results show that it is necessary to carry out the three-dimensional analysis due to the complex distributions of temperatures, cure degrees and process-induced stress for thick parts, which can be predicted at any point within composite structures in the present analysis.
基金Supported by the Natural Science Foundation of Chinathe Aviation Science Foundation of Chinathe Doctoral Innovation Foundation of Northwestern Polytechnical University
文摘Based on the interphase layer model and the spring layer model, an improved interface model was developed to evaluate the interfacial shear strength of Titanium matrix composites(TMCs) and to analyze the effects of various parameters on the interfacial properties. The results showed that the improved interface model is more suitable for calculating the interfacial properties of SiC fiber reinforced titanium matrix composites. The interfacial shear strength of SiC/Timetal-834 predicted is 500 MPa. In addition, in order to better understand the interfacial properties of composites, some push out phenomenon were analyzed.
基金Project supported by the Research Fund for the Doctoral Program of Higher Education (No.20030001112).
文摘In the previous papers, a high performance sparse static solver with two-level unrolling based on a cell-sparse storage scheme was reported. Although the solver reaches quite a high efficiency for a big percentage of finite element analysis benchmark tests, the MFLOPS (million floating operations per second) of LDL^T factorization of benchmark tests vary on a Dell Pentium IV 850 MHz machine from 100 to 456 depending on the average size of the super-equations, i.e., on the average depth of unrolling. In this paper, a new sparse static solver with two-level unrolling that employs the concept of master-equations and searches for an appropriate depths of unrolling is proposed. The new solver provides higher MFLOPS for LDL^T factorization of benchmark tests, and therefore speeds up the solution process.
文摘In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
文摘In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.
文摘An?ultrasonic compound horn is designed and manufactured, and the horn is analyzed by wave equation, finite element method and test. The modal frequencies and frequencies of the first and second longitudinal vibration of the horn are obtained by the finite element analysis. The horn is made and modal testing is carried out. The modal frequencies of the first and second longitudinal vibration are obtained respectively. The test results are in good agreement with the theoretical calculation. Experimental results show the maximum amplitude of the horn can reach 9?nm with applied excitation voltage of amplitude 7?V and frequency 21,450?Hz, when the amplitude of voltage increases?to 80?V, the horn of maximum amplitude reaches?23 μm. The maximum amplitude of the horn is approximately proportional to the amplitude of excitation voltage. The horn has the characteristics of high sensitivity and large amplitude, and can be used in ultrasonic machining and other fields.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
文摘The finite element analysis of the fretting behavior between a cylinder block and a main bearing cap is presented. The stresses, relative fretting slip, frettin g friction work parameter W and crack initiation location parameter Gon the fretting contact surface of the cylinder block are obtained and analyzed. It shows that the fretting fatigue problem of the cylinder block can be quantitat ively explained by WorG. The effects of pretightening force, friction factor and material combination of the cylinder block and the main bearing cap are studied. The computational results indicate that the fretting fatigue of the cylinder block can be allayed by increasing the elastic modulus of the cylinder block, but not by changing the other two factors.
文摘Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374041 and 10574071)
文摘This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical results indicate that unique two-times heating process is gradually experienced in the area between two adjacent grating stripes. However, there is a little change for the temperature field along the depth direction for the diamond film due to its great thermal conductivity. It further finds that the thickness of the diamond film has a significant influence on the temperature field in diamond/ZnSe system. The results are useful for the application of laser-induced TTG technique in film/substrate system.
文摘Preventing subsidence of intervertebral cages in posterior lumbar interbody fusion (PLIF) requires understanding its mechanism, which is yet to be done. We aimed to describe the mechanism of intervertebral cage subsidence by using finite element analysis through simulation of the osteoporotic vertebral bodies of an elderly woman. The data from computed tomography scans of L2-L5 vertebrae in a 72-year-old woman with osteoporosis were used to create 2 FE models: one not simulating implant placement (LS-INT) and one simulating L3/4 PLIF using polyetheretherketone (PEEK) cages (LS-PEEK). Loads and moments simulating the living body were applied to these models, and the following analyses were performed: 1) Drucker-Prager equivalent stress distribution at the cage contact surfaces;2) the distribution of damage elements in L2-L5 during incremental loading;and 3) the distribution of equivalent plastic strain at the cage contact surfaces. In analysis 1, the Drucker-Prager equivalent stress on the L3 and L4 vertebral endplates was greater for LS-PEEK than for LS-INT under all loading conditions and tended to be particularly concentrated at the contact surfaces. In analysis 2, compared with LS-INT, LS-PEEK showed more damage elements along the bone around the cages in the L3 vertebral body posterior to the cage contact surfaces, followed by the area of the L4 vertebral body posterior to the cage contact surfaces. In analysis 3, in the L3 inferior surface in LS-PEEK the distribution of equivalent plastic strain was visualized as gradually expanding along the cages from the area posterior to the cages to the area anterior to them with increased loading. These analyses suggested that in PLIF for osteoporotic vertebral bodies, the localized stress concentration generated by the use of PEEK cages may cause accumulation of microscopic damage in the fragile osteoporotic vertebral bodies around the cages, which may result in cage subsidence.
文摘<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental implant-abutment systems, using the finite element method analysis. Tensile analyses were performed to simulate different axial and obliquous masticatory loads. The influence of the variations in the contouring conditions of the interfaces was analyzed to weigh the osseointegration with linear and non-linear cases, by means of a parametric design. The geometry selected to place the prostheses was a jaw section, considering the properties of the set of cortical and trabecular bones. The results show that for non-linear contour conditions, the stress presents smaller value distributions and signals a different place in the screw-implant interface as the factor of the greater weight in this study. The location indicated that von Mises stress concentrations are not exclusive to the contact regions studied, moving to an area that is not in direct contact with the non-linear contact interfaces. In addition, the direction of load with an angle of 15 degrees presented the highest values of von Mises stress.</span> </p>
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .5 96 780 39) .
文摘The response of random plate and shell construction is analyzed with the stochastic finite element method (SFEM). Random material properties and geometric dimensions of construction are involved in this paper. A simplified isoparametric local average model is used to describe the random field. Numerical results of the examples indicate that the approach presented herein is an economical and efficient solution for such an analysis compared with Monte Carlo simulation (MCS).
文摘In order to improve the office paper feeder design, and eliminate paper jam fault in running office equipment, the static deformation and dynamic response of paper were analyzed by use of the Finite Element Method (FEM). In the analysis, the three nodes mangle plate and shell element were employed, and finite element incremental formulations were derived on the basis of Updated Lagrangian (U.L) description. The newmark method was used to analyze the transient response of paper. All the results calculated in this article coincide with those by experiments.