Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical sol...Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.展开更多
We analyze the convergence of multigrid methods applied to finite elementequations of second order with singularities caused by reentrant angles and abruptchanges in the boundary conditions. Provided much more weaker ...We analyze the convergence of multigrid methods applied to finite elementequations of second order with singularities caused by reentrant angles and abruptchanges in the boundary conditions. Provided much more weaker demand of clas-sical multigrid proofs, it is shown in this paper that, for symmetric and positivedefinite problems in the presence of singularities, multigrid algorithms with evenone smoothing step converge at a rate which is independent of the number of lev-els or unknowns. Furthermore, we extend this result to the nonsymmetric andindefinite problems.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat...In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.展开更多
A speedy accurate solution to structural fuzzy finite element equilibrium equations (SFFEEE), by combining the definition of the solution of interval equations with the mechanical meaning of the structural finite elem...A speedy accurate solution to structural fuzzy finite element equilibrium equations (SFFEEE), by combining the definition of the solution of interval equations with the mechanical meaning of the structural finite element equilibrium equations (SFEEE), was put forward. The fuzzification of the SFFEEE, which is discussed in this paper, originates from that of material property, structural boundary conditions and external loading. The computing quantity of this solution is almost equal to that of the general finite element method (GFEM).展开更多
The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect ...The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.展开更多
In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as...In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.展开更多
An optimal order of the multigrid method is given in energy-norm for the nonconforming finite element for solving the biharmonic equation, by using the nodal interpolation operator as the transfer operator between grids.
Based on the theories of the heat transfer, the principle of phase transformation and the theory of electric and magnetic field, the mathematical model of transient temperature field involving phase transformation dur...Based on the theories of the heat transfer, the principle of phase transformation and the theory of electric and magnetic field, the mathematical model of transient temperature field involving phase transformation during magnetic field quenching is established. The heat exchange equation including magnetic field is founded. The finite element equation is set up. The distributing of transient temperature on the coupling effects of heat and magnetism is obtained. With test and measurement, the results show that after magnetic field quenching, cooling velocity is decreased, cooling curve is flatten out, and the hardness is slightly raised.展开更多
Simulations of blood flows in arteries require numerical solutions of fluidstructure interactions involving Navier-Stokes equations coupled with large displacement visco-elasticity for the vessels.Among the various si...Simulations of blood flows in arteries require numerical solutions of fluidstructure interactions involving Navier-Stokes equations coupled with large displacement visco-elasticity for the vessels.Among the various simplifications which have been proposed, the surface pressure model leads to a hierarchy of simpler models including one that involves only the pressure. The model exhibits fundamental frequencies which can be computed and compared with the pulse. Yet unconditionally stable time discretizations can be constructed by combining implicit time schemes with Galerkin-characteristic discretization of the convection terms in the Navier-Stokes equations. Such problems with prescribed pressure on the walls will be shown to be efficient and accurate as an approximation of the full fluid structure interaction problem.展开更多
文摘Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.
文摘We analyze the convergence of multigrid methods applied to finite elementequations of second order with singularities caused by reentrant angles and abruptchanges in the boundary conditions. Provided much more weaker demand of clas-sical multigrid proofs, it is shown in this paper that, for symmetric and positivedefinite problems in the presence of singularities, multigrid algorithms with evenone smoothing step converge at a rate which is independent of the number of lev-els or unknowns. Furthermore, we extend this result to the nonsymmetric andindefinite problems.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.
文摘In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.
文摘A speedy accurate solution to structural fuzzy finite element equilibrium equations (SFFEEE), by combining the definition of the solution of interval equations with the mechanical meaning of the structural finite element equilibrium equations (SFEEE), was put forward. The fuzzification of the SFFEEE, which is discussed in this paper, originates from that of material property, structural boundary conditions and external loading. The computing quantity of this solution is almost equal to that of the general finite element method (GFEM).
文摘The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
文摘In this paper, a finite element method (FEM)-based multi-phase problem based on a newly proposed thermal elastoplastic constitutive model for saturated/unsaturated geomaterial is discussed. A program of FEM named as SOFT, adopting unified field equations for thermo-hydro-mechanical-air (THMA) behavior of geomaterial and using finite element-finite difference (FE-FD) scheme for so/l-water-air three-phase coupling problem, is used in the numerical simulation. As an application of the newly proposed numerical method, two engineering problems, one for slope failure in unsaturated model ground and another for in situ heating test related to deep geological repository of high-level radioactive waste (HLRW), are simulated. The model tests on slope failure in unsaturated Shirasu ground, carried out by Kitamura et al. (2007), is simulated in the framework of soil-water-air three-phase coupling under the condition of constant temperature. While the in situ heating test reported by Munoz (2006) is simulated in the same framework under the conditions of variable temperature hut constant air pressure.
文摘An optimal order of the multigrid method is given in energy-norm for the nonconforming finite element for solving the biharmonic equation, by using the nodal interpolation operator as the transfer operator between grids.
文摘Based on the theories of the heat transfer, the principle of phase transformation and the theory of electric and magnetic field, the mathematical model of transient temperature field involving phase transformation during magnetic field quenching is established. The heat exchange equation including magnetic field is founded. The finite element equation is set up. The distributing of transient temperature on the coupling effects of heat and magnetism is obtained. With test and measurement, the results show that after magnetic field quenching, cooling velocity is decreased, cooling curve is flatten out, and the hardness is slightly raised.
文摘Simulations of blood flows in arteries require numerical solutions of fluidstructure interactions involving Navier-Stokes equations coupled with large displacement visco-elasticity for the vessels.Among the various simplifications which have been proposed, the surface pressure model leads to a hierarchy of simpler models including one that involves only the pressure. The model exhibits fundamental frequencies which can be computed and compared with the pulse. Yet unconditionally stable time discretizations can be constructed by combining implicit time schemes with Galerkin-characteristic discretization of the convection terms in the Navier-Stokes equations. Such problems with prescribed pressure on the walls will be shown to be efficient and accurate as an approximation of the full fluid structure interaction problem.