期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Reduced-order proper orthogonal decomposition extrapolating finite volume element format for two-dimensional hyperbolic equations
1
作者 Zhendong LUO Fei TENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第2期289-310,共22页
This paper is concerned with establishing a reduced-order extrapolating fi- nite volume element (FVE) format based on proper orthogonal decomposition (POD) for two-dimensional (2D) hyperbolic equations. For this... This paper is concerned with establishing a reduced-order extrapolating fi- nite volume element (FVE) format based on proper orthogonal decomposition (POD) for two-dimensional (2D) hyperbolic equations. For this purpose, a semi discrete variational format relative time and a fully discrete FVE format for the 2D hyperbolic equations are built, and a set of snapshots from the very few FVE solutions are extracted on the first very short time interval. Then, the POD basis from the snapshots is formulated, and the reduced-order POD extrapolating FVE format containing very few degrees of freedom but holding sufficiently high accuracy is built. Next, the error estimates of the reduced-order solutions and the algorithm procedure for solving the reduced-order for- mat are furnished. Finally, a numerical example is shown to confirm the correctness of theoretical conclusions. This means that the format is efficient and feasible to solve the 2D hyperbolic equations. 展开更多
关键词 reduced-order finite volume element (FVE) extrapolating format properorthogonal decomposition (POD) hyperbolic equation error estimate numerical simula-tion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部