The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear probl...The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.展开更多
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted ...Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
Taking the element specific-heat interpolation function into account, a one-dimensional (l-D) finite ele- ment temperature field model for the on-line control of the ultra fast cooling process was developed based on...Taking the element specific-heat interpolation function into account, a one-dimensional (l-D) finite ele- ment temperature field model for the on-line control of the ultra fast cooling process was developed based on the heat transfer theory. This 1-D model was successfully implemented in one 4 300 mm plate production line. To improve the calculation accuracy of this model, the temperature-dependent material properties inside an element were considered during the modeling process. Furthermore, in order to satisfy the real-time requirements of the on-line model, the variable bandwidth storage method and the Cholesky decomposition method were used in the programming to storage the data and carry out the numerical solution. The on-line application of the proposed model indicated that the devia- tion between the calculated cooling stop temperature and the measured one was less than ± 15 ℃.展开更多
尽管以二阶精度格式为基础的计算流体力学(CFD)方法和软件已经在航空航天飞行器设计中发挥了重要的作用,但是由于二阶精度格式的耗散和色散较大,对于湍流、分离等多尺度流动现象的模拟,现有成熟的CFD软件仍难以给出满意的结果,为此CFD...尽管以二阶精度格式为基础的计算流体力学(CFD)方法和软件已经在航空航天飞行器设计中发挥了重要的作用,但是由于二阶精度格式的耗散和色散较大,对于湍流、分离等多尺度流动现象的模拟,现有成熟的CFD软件仍难以给出满意的结果,为此CFD工作者发展了众多的高阶精度计算格式.如果以适应的计算网格来分类,一般可以分为基于结构网格的有限差分格式、基于非结构/混合网格的有限体积法和有限元方法,以及各种类型的混合方法.由于非结构/混合网格具有良好的几何适应性,基于非结构/混合网格的高阶精度格式近年来备受关注.本文综述了近年来基于非结构/混合网格的高阶精度格式研究进展,重点介绍了空间离散方法,主要包括k-Exact和ENO/WENO等有限体积方法,间断伽辽金(DG)有限元方法,有限谱体积(SV)和有限谱差分(SD)方法,以及近来发展的各种DG/FV混合算法和将各种方法统一在一个框架内的CPR(correction procedure via reconstruction)方法等.随后简要介绍了高阶精度格式应用于复杂外形流动数值模拟的一些需要关注的问题,包括曲边界的处理方法、间断侦测和限制器、各种加速收敛技术等.在综述过程中,介绍了各种方法的优势与不足,其间介绍了作者发展的基于"静动态混合重构"的DG/FV混合算法.最后展望了基于非结构/混合网格的高阶精度格式的未来发展趋势及应用前景.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51378293,51078199,50678093,and 50278046)the Program for Changjiang Scholars and the Innovative Research Team in University of China(No.IRT00736)
文摘The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (No.50278046)
文摘Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
基金Item Sponsored by National Key Technologies Research and Development Program of China(2012BAF04B01)
文摘Taking the element specific-heat interpolation function into account, a one-dimensional (l-D) finite ele- ment temperature field model for the on-line control of the ultra fast cooling process was developed based on the heat transfer theory. This 1-D model was successfully implemented in one 4 300 mm plate production line. To improve the calculation accuracy of this model, the temperature-dependent material properties inside an element were considered during the modeling process. Furthermore, in order to satisfy the real-time requirements of the on-line model, the variable bandwidth storage method and the Cholesky decomposition method were used in the programming to storage the data and carry out the numerical solution. The on-line application of the proposed model indicated that the devia- tion between the calculated cooling stop temperature and the measured one was less than ± 15 ℃.
文摘尽管以二阶精度格式为基础的计算流体力学(CFD)方法和软件已经在航空航天飞行器设计中发挥了重要的作用,但是由于二阶精度格式的耗散和色散较大,对于湍流、分离等多尺度流动现象的模拟,现有成熟的CFD软件仍难以给出满意的结果,为此CFD工作者发展了众多的高阶精度计算格式.如果以适应的计算网格来分类,一般可以分为基于结构网格的有限差分格式、基于非结构/混合网格的有限体积法和有限元方法,以及各种类型的混合方法.由于非结构/混合网格具有良好的几何适应性,基于非结构/混合网格的高阶精度格式近年来备受关注.本文综述了近年来基于非结构/混合网格的高阶精度格式研究进展,重点介绍了空间离散方法,主要包括k-Exact和ENO/WENO等有限体积方法,间断伽辽金(DG)有限元方法,有限谱体积(SV)和有限谱差分(SD)方法,以及近来发展的各种DG/FV混合算法和将各种方法统一在一个框架内的CPR(correction procedure via reconstruction)方法等.随后简要介绍了高阶精度格式应用于复杂外形流动数值模拟的一些需要关注的问题,包括曲边界的处理方法、间断侦测和限制器、各种加速收敛技术等.在综述过程中,介绍了各种方法的优势与不足,其间介绍了作者发展的基于"静动态混合重构"的DG/FV混合算法.最后展望了基于非结构/混合网格的高阶精度格式的未来发展趋势及应用前景.