期刊文献+
共找到3,654篇文章
< 1 2 183 >
每页显示 20 50 100
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
1
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak foundation beam Vibration Equation Hermite finite element method Error Estimation Numerical Simulation
下载PDF
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
2
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale finite element method MAGNETO-ELECTRO-elastic Multifield Coupling Numerical Base Functions
下载PDF
A New Isogeometric Finite Element Method for Analyzing Structures
3
作者 Pan Su Jiaxing Chen +1 位作者 Ronggang Yang Jiawei Xiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1883-1905,共23页
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini... High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar. 展开更多
关键词 finite element method isogeometric analysis uniform B-spline non-uniform rational B-spline beam and bar
下载PDF
Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation
4
作者 Pei ZHANG P.SCHIAVONE Hai QING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期89-108,共20页
A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the f... A nonlocal study of the vibration responses of functionally graded(FG)beams supported by a viscoelastic Winkler-Pasternak foundation is presented.The damping responses of both the Winkler and Pasternak layers of the foundation are considered in the formulation,which were not considered in most literature on this subject,and the bending deformation of the beams and the elastic and damping responses of the foundation as nonlocal by uniting the equivalently differential formulation of well-posed strain-driven(ε-D)and stress-driven(σ-D)two-phase local/nonlocal integral models with constitutive constraints are comprehensively considered,which can address both the stiffness softening and toughing effects due to scale reduction.The generalized differential quadrature method(GDQM)is used to solve the complex eigenvalue problem.After verifying the solution procedure,a series of benchmark results for the vibration frequency of different bounded FG beams supported by the foundation are obtained.Subsequently,the effects of the nonlocality of the foundation on the undamped/damping vibration frequency of the beams are examined. 展开更多
关键词 two-phase nonlocal elasticity damping vibration functionally graded(FG)beam nonlocal viscoelastic Winkler-Pasternak foundation generalized differential quadrature method(GDQM)
下载PDF
A Unified Dimensionless Parameter for Finite Element Mesh for Beams Resting on Elastic Foundation
5
作者 Ping Lou Xinlei Zhang +2 位作者 F.T.K.Au Zixian Zhang Yi Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期955-969,共15页
Discretising a structure into elements is a key step in finite element(FE)analysis.The discretised geometry used to formulate an FE model can greatly affect accuracy and validity.This paper presents a unified dimensio... Discretising a structure into elements is a key step in finite element(FE)analysis.The discretised geometry used to formulate an FE model can greatly affect accuracy and validity.This paper presents a unified dimensionless parameter to generate a mesh of cubic FEs for the analysis of very long beams resting on an elastic foundation.A uniform beam resting on elastic foundation with various values of flexural stiffness and elastic supporting coefficients subject to static load and moving load is used to illustrate the application of the proposed parameter.The numerical results show that(a)Even if the values of the flexural stiffness of the beam and elastic supporting coefficient of the elastic foundation are different,the same proposed parameter“s”can ensure the same accuracy of the FE solution,but the accuracy may differ for use of the same element length;(b)The proposed dimensionless parameter“s”can indeed be used as a unified index to generate the mesh for a beam resting on elastic foundation,whereas the use of the same element length as a criterion may be misleading;(c)The errors between the FE and analytical solutions for the maximum vertical displacement,shear force and bending moment of the beam increase with the dimensionless parameter“s”;and(d)For the given allowable errors for the vertical displacement,shear force and bending moment of the beam under static load and moving load,the corresponding values of the proposed parameter are provided to guide the mesh generation. 展开更多
关键词 beam cubic finite element elastic foundation finite element mesh unified dimensionless parameter.
下载PDF
Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fbers
6
作者 H.M.FEIZABAD M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期543-562,共20页
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar... Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams. 展开更多
关键词 bamboo fiber free vibration buckling analysis functionally graded(FG)beam elastic foundation generalized differential quadrature method(GDQM)
下载PDF
Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions 被引量:3
7
作者 Yan Gong Zhilin Li 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期23-39,共17页
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body... In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence. 展开更多
关键词 Immersed interface finite element methods elasticity interface problems singularity removal homogeneous and non-homogeneous jump conditions level-set function.
下载PDF
Implementing the Node Based Smoothed Finite Element Method as User Element in Abaqus for Linear and Nonlinear Elasticity 被引量:2
8
作者 S.Kshrisagar A.Francis +2 位作者 J.J.Yee S.Natarajan C.K.Lee 《Computers, Materials & Continua》 SCIE EI 2019年第8期481-502,共22页
In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element... In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM. 展开更多
关键词 Smoothed finite element method(SFEM) node based SFEM(NSFEM) linear and nonlinear elasticity Abaqus UEL(user elements) compressible and nearlyincompressible materials
下载PDF
ANALYSIS OF BENDING, VIBRATION AND STABILITY FOR THIN PLATE ON ELASTIC FOUNDATION BY THE MULTIVARIABLE SPLINE ELEMENT METHOD 被引量:1
9
作者 沈鹏程 何沛祥 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第8期779-787,共9页
In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable... In this paper, the bicubic splines in product form are used to construct the multi-field functions for bending moments, twisting moment and transverse displacement of the plate on elastic foundation. The multivariable spline element equations are derived, based on the mixed variational principle. The analysis and calculations of bending, vibration and stability of the plates on elastic foundation are presented in the paper. Because the field functions of plate on elastic foundation are assumed independently, the precision of the field variables of bending moments and displacement is high. 展开更多
关键词 multivariable spline element method bicubic B spline plate on elastic foundation
下载PDF
An explicit finite element-finite difference method for analyzing the effect of visco-elastic local topography on the earthquake motion 被引量:6
10
作者 李小军 廖振鹏 关慧敏 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第3期447-456,共10页
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite... An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability. 展开更多
关键词 VISCO-elastic seismic response finite difference method explicit finite element artificial boundary
下载PDF
GENERAL SOLUTION FOR DYNAMICAL PROBLEM OF INFINITE BEAM ON AN ELASTIC FOUNDATION
11
作者 郑小平 王尚文 陈百屏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第7期633-637,共5页
Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variabl... Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally, the cases of free vibration,impulsive response and moving load are also discussed. 展开更多
关键词 elastic foundation infinite beam dynamical problem general solution integral transformation method
下载PDF
Quasi-optimal complexity of adaptive finite element method for linear elasticity problems in two dimensions
12
作者 Chunmei LIU Liuqiang ZHONG +1 位作者 Shi SHU Yingxiong XIAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第2期151-168,共18页
This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination ... This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples. 展开更多
关键词 linear elasticity problem adaptive finite element method (AFEM) quasioptimal complexity
下载PDF
Three-Dimensional Thermo-Elastic-Plastic Finite Element Method Modeling for Predicting Weld-Induced Residual Stresses and Distortions in Steel Stiffened-Plate Structures 被引量:1
13
作者 Myung Su Yi Chung Min Hyun Jeom Kee Paik 《World Journal of Engineering and Technology》 2018年第1期176-200,共25页
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p... The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented. 展开更多
关键词 STEEL Stiffened-Plate Structures Weld-Induced Initial Distortion Weld-Induced Residual Stress Nonlinear finite element method THREE-DIMENSIonAL Ther-mo-elastic-Plastic finite element Analysis Full Scale Measurements
下载PDF
RATIONAL FINITE ELEMENT METHOD FOR ELASTIC BENDING OF REISSNER PLATES
14
作者 孙卫明 杨光松 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第2期193-199,共7页
In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfe... In this paper; some deformation patterns defined by differential equations of the elastic system are introduced into the revised functional for the incompatible elements. And therefore the rational FEM, which is perfect combination of the analytic methods and numeric methods, has been presented. This new approach satisfies not only the mechanical requirement of the elements but also the geometric requirement of the complex structures. What's more the quadrilateral element obtained accordingly for the elastic bending of thick plates demonstrates such advantages as high precision for computation and availability of accurate integration for stiffness matrices. 展开更多
关键词 thick Reissner plates elastic bending of thick plates rational finite element method
下载PDF
Conversion between solid and beam element solutions of finite element method based on meta-modeling theory:development and application to a ramp tunnel structure 被引量:1
15
作者 JASC Jayasinghe M. Hori +2 位作者 MR Riaz MLL Wijerathne T Ichimura 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期297-309,共13页
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ... In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end. 展开更多
关键词 meta-modeling theory finite element method solid and beam element models continuum mechanics structural mechanics
下载PDF
Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach 被引量:3
16
作者 M. FARAJI-OSKOUIE A. NOROUZZADEH +1 位作者 R. ANSARI H. ROUHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第6期767-782,共16页
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this... A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions. 展开更多
关键词 INTEGRAL MODEL of NonLOCAL elasticITY DIFFERENTIAL MODEL of NonLOCAL elasticITY MICROPOLAR theory finite element (FE) analysis Timoshenko nano-beam
下载PDF
A Locking-free Nonconforming Finite Element for Planar Linear Elasticity 被引量:1
17
作者 ZHA O Zhong-jian ZHANG Guan-yu CHEN Shao-chun 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第2期211-218,共8页
We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is r... We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is robust and optimal, in the sense that the convergence estimate in the energy is independent of the Lame parameter λ. 展开更多
关键词 nonconforming finite element method planar elasticity the optimal error estimates
下载PDF
ANALYSIS OF COMPOSITE LAMINATE BEAMS USING COUPLING CROSS-SECTION FINITE ELEMENT METHOD
18
作者 姜文光 John L.Henshall 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1709-1718,共10页
Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of c... Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of complexity, and thus time, to the stress and deformation analyses of such components, even using numerical approaches such as finite elements. The analysis of composite laminate beams subjected to uniform extension, bending, and/or twisting loads was performed by a novel implementation of the usual finite element method. Due to the symmetric features of the deformations, only a thin slice of the beam to be analysed needs to be modelled. Conventional threedimensional solid finite elements were used for the structural discretization. The accurate deformation relationships were formulated and implemented through the coupling of nodal translational degrees of freedom in the numerical analysis. A sample solution for a rectangular composite laminate beam is presented to show the validity and accuracy of the proposed method. 展开更多
关键词 composite material beam coupling equation finite element method extension BENDING TORSIon
下载PDF
Surrounding rock deformation analysis of underground caverns with multi-body finite element method
19
作者 Wan-jin LIANG Chao SU Fei WANG Xiao-jun TANG 《Water Science and Engineering》 EI CAS 2009年第3期71-77,共7页
Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discont... Discontinuous deformation problems are common in rock engineering. Numerical analysis methods based on system models of the discrete body can better solve these problems. One of the most effective solutions is discontinuous deformation analysis (DDA) method, but the DDA method brings about rock embedding problems when it uses the strain assumption in elastic deformation and adopts virtual springs to simulate the contact problems. The multi-body finite element method (FEM) proposed in this paper can solve the problems of contact and deformation of blocks very well because it integrates the FEM and multi-body system dynamics theory. It is therefore a complete method for solving discontinuous deformation problems through balance equations of the contact surface and for simulating the displacement of whole blocks. In this study, this method was successfully used for deformation analysis of underground caverns in stratified rock. The simulation results indicate that the multi-body FEM can show contact forces and the stress states on contact surfaces better than DDA, and that the results calculated with the multi-body FEM are more consistent with engineering practice than those calculated with DDA method. 展开更多
关键词 multi-body finite element method discontinuous deformation surrounding rockdeformation elastic contact coordination displacement
下载PDF
An explicit finite element method for dynamic analysis in three-medium coupling system and its application
20
作者 赵成刚 李伟华 +1 位作者 王进廷 李亮 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期272-282,共11页
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ... In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given. 展开更多
关键词 fluid saturated porous medium-elastic single-phase medium-ideal fluid medium coupled system dynamic response analysis explicit finite element method
下载PDF
上一页 1 2 183 下一页 到第
使用帮助 返回顶部