A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization...A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. ...In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.展开更多
This article presents a review of our research effort on the eigenanalysis of open radiating waveguides and closed resonating structures. A two dimensional (2-D) hybrid Finite Element method in conjunction with a cyli...This article presents a review of our research effort on the eigenanalysis of open radiating waveguides and closed resonating structures. A two dimensional (2-D) hybrid Finite Element method in conjunction with a cylindrical harmonics expansion is established to formulate the open waveguide generalized eigenvalue problem. The key element of this approach refers to the adoption of a vector Dirichlet-to-Neumann map to rigorously enforce the continuity of the two field expansions along a truncation surface. The resulting algorithm was able to evaluate both surface and leaky eigenmodes. The eigenanalysis of three dimensional (3-D) structures involves vast research challenges, especially when they are electrically large and open-radiating. The effort herein is focused on the electrically large case including the losses due to the finite conductivity of metallic walls and objects as well as the loading material losses. The former is introduced through impedance or Leontovich boundary condition, resulting to a non-linear-polynomial generalized eigenvalue problem. A straightforward linearization solution is adopted along with a more efficient alternative technique which mimics analytical approaches. For this one the linear eigenproblem formulated assuming metals as perfect electric conductors is initially solved and their finite conductivity is accounted through impedance boundary conditions enforced locally on the resulting eigenvectors. Finally, some numerical results are presented to verify the performance of these methodologies along with a discussion on their possibilities for extension to open 3D structures as well as to characteristic modes eigenanalysis.展开更多
A random parameter can be transformed into an interval number in the structural analysis with the concept of the confidence interval. Hence, analyses of uncertain structural systems can be used in the traditional FE...A random parameter can be transformed into an interval number in the structural analysis with the concept of the confidence interval. Hence, analyses of uncertain structural systems can be used in the traditional FEM software. In some cases, the amount of solutions in stochastic structures is nearly as many as that in the traditional structural problems. In addition, a new method to evaluate the failure probability of structures is presented for the needs of the modern engineering design.展开更多
Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the materi...Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the material is taken into account when using the method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic problems. Developed PIV’s significant savings of computer calculation has been compared with the calculation on a fine mesh of traditional FEM. Designed scheme allows analysis of the mutual influence of openings. Analysis of the transformation zone of plastic deformation is developed. For definiteness, the cylindrical shell structures with several rectangular openings are considered.展开更多
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems tha...The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
The aim of this study is to apply the concept of functionally graded materials(FGMs) to cemented carbides and to develop high-performance rock drill buttons. Cobalt-gradient structure was introduced to the surface zon...The aim of this study is to apply the concept of functionally graded materials(FGMs) to cemented carbides and to develop high-performance rock drill buttons. Cobalt-gradient structure was introduced to the surface zone of the buttons by carburizing process. Finite element method and XRD measurement were used to decide the distribution of thermal residual stress. Constitutive parameters were determined by constraint factor. Numerical results show that residual stresses of gradient buttons mainly concentrate in cobalt-gradient zone. There is compressive stress in the surface zone and tensile stress in the cobalt-rich zone. The maximum value of surface compressive stress is 180 MPa for WC-6Co cemented carbides. And the numerical results agree with the results of XRD measurement.展开更多
A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along ...A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.展开更多
A solution of probabilistic FEM for elastic-plastic materials is presented based on the incremental theory of plasticity and a modified initial stress method. The formulations are deduced through a direct differentiat...A solution of probabilistic FEM for elastic-plastic materials is presented based on the incremental theory of plasticity and a modified initial stress method. The formulations are deduced through a direct differentiation scheme. Partial differentiation of displacement, stress and the performance function can be iteratively performed with the computation of the mean values of displacement and stress. The presented method enjoys the efficiency of both the perturbation method and the finite difference method, but avoids the approximation during the partial differentiation calculation. In order to improve the efficiency, the adjoint vector method is introduced to calculate the differentiation of stress and displacement with respect to random variables. In addition, a time-saving computational method for reliability index of elastic-plastic materials is suggested based upon the advanced First Order Second Moment (FOSM) and by the usage of Taylor expansion for displacement. The suggested method is also applicable to 3-D cases.展开更多
In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturb...In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturbation method, a unifiedrandom variational principle in finite defomation of elastieity and nonlinear randomfinite element method are esiablished, and used.for reliability, analysis of structures.Numerical examples showed that the methods have the advontages of simple andconvenient program implementation and are effective for the probabilistic problems inmechanics.展开更多
This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel ...This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is ...We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems.展开更多
The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-sc...The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.展开更多
A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such a...A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.展开更多
The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant i...The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.展开更多
基金supported by a Major Research Project in Higher Education Institutions in Henan Province,with Project Number 23A560015.
文摘A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
文摘In this study, a new method for conversion of solid finite element solution to beam finite element solution is developed based on the meta-modeling theory which constructs a model consistent with continuum mechanics. The proposed method is rigorous and efficient compared to a typical conversion method which merely computes surface integration of solid element nodal stresses to obtain cross-sectional forces. The meta-modeling theory ensures the rigorousness of proposed method by defining a proper distance between beam element and solid element solutions in a function space of continuum mechanics. Results of numerical verification test that is conducted with a simple cantilever beam are used to find the proper distance function for this conversion. Time history analysis of the main tunnel structure of a real ramp tunnel is considered as a numerical example for the proposed conversion method. It is shown that cross-sectional forces are readily computed for solid element solution of the main tunnel structure when it is converted to a beam element solution using the proposed method. Further, envelopes of resultant forces which are of primary importance for the purpose of design, are developed for a given ground motion at the end.
文摘This article presents a review of our research effort on the eigenanalysis of open radiating waveguides and closed resonating structures. A two dimensional (2-D) hybrid Finite Element method in conjunction with a cylindrical harmonics expansion is established to formulate the open waveguide generalized eigenvalue problem. The key element of this approach refers to the adoption of a vector Dirichlet-to-Neumann map to rigorously enforce the continuity of the two field expansions along a truncation surface. The resulting algorithm was able to evaluate both surface and leaky eigenmodes. The eigenanalysis of three dimensional (3-D) structures involves vast research challenges, especially when they are electrically large and open-radiating. The effort herein is focused on the electrically large case including the losses due to the finite conductivity of metallic walls and objects as well as the loading material losses. The former is introduced through impedance or Leontovich boundary condition, resulting to a non-linear-polynomial generalized eigenvalue problem. A straightforward linearization solution is adopted along with a more efficient alternative technique which mimics analytical approaches. For this one the linear eigenproblem formulated assuming metals as perfect electric conductors is initially solved and their finite conductivity is accounted through impedance boundary conditions enforced locally on the resulting eigenvectors. Finally, some numerical results are presented to verify the performance of these methodologies along with a discussion on their possibilities for extension to open 3D structures as well as to characteristic modes eigenanalysis.
基金TheNationalNaturalScienceandChinesePhysicsResearchInstituteFoundationofChina (No .10 0 76 0 14 )andtheSWJTUFoundation (No .2 0 0 2B0 8) .
文摘A random parameter can be transformed into an interval number in the structural analysis with the concept of the confidence interval. Hence, analyses of uncertain structural systems can be used in the traditional FEM software. In some cases, the amount of solutions in stochastic structures is nearly as many as that in the traditional structural problems. In addition, a new method to evaluate the failure probability of structures is presented for the needs of the modern engineering design.
文摘Projective-iterative version of finite element method has developed for numerical simulation of the stress-strain state of nonhomogeneous shell-type structures (shells with openings). Plastic deformation of the material is taken into account when using the method of elastic solutions that reduce the solution of elastoplastic problems to solution of elastic problems. Developed PIV’s significant savings of computer calculation has been compared with the calculation on a fine mesh of traditional FEM. Designed scheme allows analysis of the mutual influence of openings. Analysis of the transformation zone of plastic deformation is developed. For definiteness, the cylindrical shell structures with several rectangular openings are considered.
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
基金financial support by Severo Ochoa Centre of Excellence (2019-2023) Grant No. CEX2018-000797-Sfunded by MCIN/AEI/10.13039/501100011033+1 种基金research projects BIA2017-84752-RPID2020-119598RB-I00
文摘The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
基金Project(50323008) supported by the National Natural Science Foundation of China
文摘The aim of this study is to apply the concept of functionally graded materials(FGMs) to cemented carbides and to develop high-performance rock drill buttons. Cobalt-gradient structure was introduced to the surface zone of the buttons by carburizing process. Finite element method and XRD measurement were used to decide the distribution of thermal residual stress. Constitutive parameters were determined by constraint factor. Numerical results show that residual stresses of gradient buttons mainly concentrate in cobalt-gradient zone. There is compressive stress in the surface zone and tensile stress in the cobalt-rich zone. The maximum value of surface compressive stress is 180 MPa for WC-6Co cemented carbides. And the numerical results agree with the results of XRD measurement.
基金Funded by the National Natural Science Foundation of China(No.51574201)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(KLGP2015K006)the Scientific and Technical Youth Innovation Group(Southwest Petroleum University)(2015CXTD05)
文摘A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.
基金The project supported by the Research Grant Council of Hong Kong (HKUST 722196E, 6039197E)the National Natural Science Foundation of China(59809003)the Foundation of University Key Teacher by the Chinese Ministry of Education
文摘A solution of probabilistic FEM for elastic-plastic materials is presented based on the incremental theory of plasticity and a modified initial stress method. The formulations are deduced through a direct differentiation scheme. Partial differentiation of displacement, stress and the performance function can be iteratively performed with the computation of the mean values of displacement and stress. The presented method enjoys the efficiency of both the perturbation method and the finite difference method, but avoids the approximation during the partial differentiation calculation. In order to improve the efficiency, the adjoint vector method is introduced to calculate the differentiation of stress and displacement with respect to random variables. In addition, a time-saving computational method for reliability index of elastic-plastic materials is suggested based upon the advanced First Order Second Moment (FOSM) and by the usage of Taylor expansion for displacement. The suggested method is also applicable to 3-D cases.
文摘In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturbation method, a unifiedrandom variational principle in finite defomation of elastieity and nonlinear randomfinite element method are esiablished, and used.for reliability, analysis of structures.Numerical examples showed that the methods have the advontages of simple andconvenient program implementation and are effective for the probabilistic problems inmechanics.
文摘This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
基金supported by the National Natural Science Foundation of China(Nos.12132001 and 52192632)。
文摘We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems.
基金supported by the National Natural Science Foundation of China(Nos.10801042 and 11171257)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20104410120001)
文摘The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.
基金Project (SPKJ 016-06) supported by the Key Research Project of State Power CorporationProject (2004AC101D31) supported the Key Scientific Research Project of Hubei Province, China
文摘A nonlinear finite element model of the nut post reinforced concrete (RC) structure of the safety mechanism in the Three Gorges Project (TGP) ship lift was built by ANSYS software. Some irregular structures such as the nut post and the rotary rod were divided by curved surface into a series of regular parts, and the structures were all meshed to hexahedron. Constraint equations were defined between two interfaces with different element sizes and mesh patterns. PRETS179 elements were used to simulate the preload in the tendons and the pre-stressed screws, and the loss of prestressing force was calculated. Five extreme load cases were analyzed. The stress of each part in the structure was obtained. The results indicate that the maximum compressive stress of concrete C35 is 24.13 MPa, so the concrete may be partially crushed; the maximum tensile stress of the grouting motar is 6.73 MPa, so the grouting motar may partially fracture; the maximum yon Mises stress of the rotary rod is 648.70 MPa, therefore the rotary rod may partially yield.
基金National Key Research and Development Program of China under Grant No.2016YFC0701106Natural Sciences and Engineering Research Council of Canada via Discovery under Grant No.NSERC RGPIN-2017-05556 Li
文摘The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.