期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection 被引量:1
1
作者 Xiao-Lei Chu Xi-Zi Song +5 位作者 Yu-Ru Li Zi-Ren Wu Qi Li Qing-Wen Li Xiao-Song Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期683-688,共6页
Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ... Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ultrasound before percutaneous nerve stimulation can help prevent further injury to an already injured nerve.However,stimulation parameters have not been standardized.In this study,we constructed a multi-layer human forearm model using finite element modeling.Taking current density and activated function as optimization indicators,the optimal percutaneous nerve stimulation parameters were established.The optimal parameters were parallel placement located 3 cm apart with the injury site at the midpoint between the needles.To validate the efficacy of this regimen,we performed a randomized controlled trial in 23 patients with median nerve transection who underwent neurorrhaphy.Patients who received conventional rehabilitation combined with percutaneous electrical nerve stimulation experienced greater improvement in sensory function,motor function,and grip strength than those who received conventional rehabilitation combined with transcutaneous electrical nerve stimulation.These findings suggest that the percutaneous electrical nerve stimulation regimen established in this study can improve global median nerve function in patients with median nerve transection. 展开更多
关键词 finite element modeling median nerve transection nerve regeneration NEUROREHABILITATION percutaneous electrical nerve stimulation peripheral nerve injury randomized controlled trial
下载PDF
Proper orthogonal decomposition based seismic source wavefield reconstruction for finite element reverse time migration
2
作者 Wen-Zhuo Tan Bang-Yu Wu +1 位作者 Rui Li Bo Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期199-211,共13页
The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The b... The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging. 展开更多
关键词 Reverse time migration Seismic wavefield reconstruction finite element modeling Proper orthogonal decomposition
下载PDF
Torsional Response Analysis of Flexible Pipe Based on Theory and Finite Element Method
3
作者 LEI Qing-long ZHU Xiao-hua 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期190-203,共14页
As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is on... As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is one of the failure modes of flexible pipes during transportation and laying. In this paper, a theoretical model(TM) of a flexible pipe section mechanics is established, in which the carcass layer and the pressure armor layer are equivalent to the orthogonal anisotropic layers due to its complex cross-section structure. The calculation results of the TM are consistent with those of a finite element model(FEM), which can accurately describe the torsional response of the flexible pipe.Subsequently, the TM and FEM are used to discuss the influence of boundary conditions on the torsional response.The structure of the flexible pipe is stable when twisted counterclockwise. However, limiting the top axial displacement can improve the axial and radial instability of the tensile armor layer when twisted clockwise. Finally, it is recommended that the flexible pipe can be kept under top fixation during service or installation to avoid torsional failure. 展开更多
关键词 flexible pipe torsional response analytical model finite element model
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
4
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler Rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
Behaviour of non-ballast pre-stressed and precast track structures in high speed railway based on multiscale finite element model
5
作者 Yuhang Wang Jjun Wang +2 位作者 Qi Tang Jike Tan Guobing Lu 《High-Speed Railway》 2023年第1期70-85,共16页
In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditio... In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized. 展开更多
关键词 High speed railway Non-ballast track Multiscale finite element model
下载PDF
Micro computed tomography based finite element models for elastic and strength properties of 3D printed glass scaffolds
6
作者 Erica Farina Dario Gastaldi +4 位作者 Francesco Baino Enrica Verne Jonathan Massera Gissur Orlygsson Pasquale Vena 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第2期292-306,共15页
In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibe... In this study,the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography(/x-CT)based finite element modeling.The scaffolds are obtained by printing fibers along two perpendicular directions on parallel layers with a 90°tilting between two adjacent layers.A parametric study is first presented with the purpose to assess the effect of the major design parameters on the elastic and strength properties of the scaffold;the mechanical properties of the 3D printed scaffolds are eventually estimated by using the\i-CT data with the aim of assessing the effect of defects on the final geometry which are intrinsic in the manufacturing process.The macroscopic elastic modulus and strength of the scaffold are determined by simulating a uniaxial compressive test along the direction which is perpendicular to the layers of the printed fibers.An iterative approach has been used in order to determine the scaffold strength.A partial validation of the computational model has been obtained through comparison of the computed results with experimental values presented in[10]on a ceramic scaffold having the same geometry.All the results have been presented as non-dimensional values.The finite element analyses have shown which of the selected design parameters have the major effect on the stiffness and strength,being the porosity and fiber shifting between adjacent layers the most important ones.The analyses carried out on the basis of the/x-C7 data have shown elastic modulus and strength which are consistent with that found on ideal geometry at similar macroscopic porosity. 展开更多
关键词 Bioactive glass Scaffold porosity finite element model μ-CT
原文传递
Prediction of Cross-Tension Strength of Self-Piercing Riveted Joints Using Finite Element Simulation and XGBoost Algorithm 被引量:8
7
作者 Jianping Lin Chengwei Qi +4 位作者 Hailang Wan Junying Min Jiajie Chen Kai Zhang Li Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期168-178,共11页
Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension stren... Self-piercing riveting(SPR)has been widely used in automobile industry,and the strength prediction of SPR joints always attracts the attention of researchers.In this work,a prediction method of the cross-tension strength of SPR joints was proposed on the basis of finite element(FE)simulation and extreme gradient boosting decision tree(XGBoost)algorithm.An FE model of SPR process was established to simulate the plastic deformations of rivet and substrate materials and verified in terms of cross-sectional dimensions of SPR joints.The residual mechanical field from SPR process simulation was imported into a 2D FE model for the cross-tension testing simulation of SPR joints,and cross-tension strengths from FE simulation show a good consistence with the experiment result.Based on the verified FE model,the mechanical properties and thickness of substrate materials were varied and then used for FE simulation to obtain cross-tension strengths of a number of SPR joints,which were used to train the regression model based on the XGBoost algorithm in order to achieve prediction for cross-tension strength of SPR joints.Results show that the cross-tension strengths of SPR steel/aluminum joints could be successfully predicted by the XGBoost regression model with a respective error less than 7.6%compared to experimental values. 展开更多
关键词 Self-piercing riveting Joint strength Cross-tension finite element modeling Machine learning
下载PDF
Determination of the Normal Contact Stiffness and Integration Time Step for the Finite Element Modeling of Bristle-Surface Interaction 被引量:4
8
作者 Libardo V.Vanegas-Useche Magd M.Abdel-Wahab Graham A.Parker 《Computers, Materials & Continua》 SCIE EI 2018年第7期169-184,共16页
In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITS... In finite element modeling of impact,it is necessary to define appropriate values of the normal contact stiffness,Kn,and the Integration Time Step(ITS).Because impacts are usually of very short duration,very small ITSs are required.Moreover,the selection of a suitable value of Kn is a critical issue,as the impact behavior depends dramatically on this parameter.In this work,a number of experimental tests and finite element analyses have been performed in order to obtain an appropriate value of Kn for the interaction between a bristle of a gutter brush for road sweeping and a concrete surface.Furthermore,a suitable ITS is determined.The experiments consist of releasing a steel bristle that is placed vertically at a certain distance from a concrete surface and tracking the impact.Similarly,in the finite element analyses,a beam is modeled in free fall and impacting a surface;contact and target elements are attached to the beam and the surface,respectively.The results of the experiments and the modeling are integrated through the principle of conservation of energy,the principle of linear impulse and momentum,and Newton’s second law.The results demonstrate that,for the case studied,Kn and the impact time tend to be independent of the velocity just before impact and that Kn has a very large variation,as concrete is a composite material with a rough surface.Also,the ratio between the largest height of the bristle after impact and the initial height tends to be constant. 展开更多
关键词 BRUSH street sweeping finite element modeling contact mechanics
下载PDF
Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT 被引量:3
9
作者 张海军 周储伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期639-645,共7页
The precise microscopic feature of carbon-carbon(C/C)composites is essential for an accurate prediction of their mechanical behavior.After fabrication,actual microscopic feature differs from simple ideal spatial model... The precise microscopic feature of carbon-carbon(C/C)composites is essential for an accurate prediction of their mechanical behavior.After fabrication,actual microscopic feature differs from simple ideal spatial model.Micro-computed-tomography(CT)scan can well describe internal microstructures of composites.Therefore,a reconstructed model is developed based on mirco-CT,by a series of prodcedures including extracting components,generating new binary images and establishing a finite element(FE)model.Compared with the model designed by reconstructed commercial software MIMICS,the presented reconstructed FE model is superior in terms of high mesh quality and controllable mesh quantity.The precision of the model is verified by experiment. 展开更多
关键词 C/C composites mirco-CT binary image reconstructed procedure finite element model
下载PDF
Deformation Stability of GH4033 Superalloy in the Hot Continuous Rolling Process Based on Dynamic Material Model and Finite Element Model 被引量:1
10
作者 汪盼盼 XI Taotao +1 位作者 隋凤利 YANG Lianjin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期490-499,共10页
The flow stress behavior of GH4033 superalloy was determined by the hot compression tests at the temperatures of 1223-1473 K and the total strains of 0.6 with the strain rates of 0.001-30.0 s^(-1) by using cylindrical... The flow stress behavior of GH4033 superalloy was determined by the hot compression tests at the temperatures of 1223-1473 K and the total strains of 0.6 with the strain rates of 0.001-30.0 s^(-1) by using cylindrical samples.The processing maps based on the dynamic material model(DMM)combined with the corresponding microstructure observations indicate the reasonable processing domain locating at the strain rates of 0.1-1.0 s^(-1) and the deformation temperature of 1273-1423 K.Meanwhile,the numerical simulation based on finite element model(FEM)described the variation of the effective strain,effective strain rate and the temperature for the core node,and unveiled the influence of the hot rolling parameters considering the initial temperature(T_(0))range of 1223-1473 K and the first-stand biting velocity(v_(0))range of 0.15-0.35 m·s^(-1).Furthermore,the deformation stability of GH4033 superalloy in the round rod hot continuous rolling(HCR)process is described and analyzed by coupling the three-dimensional(3-D)processing map,and the spatial trajectory lines were determined by the numerically simulated temperatures,the strains and the strain rates.Finally,the results show that the hot deformation stability of GH4033 can be achieved by the rolling process parameters located at T_(0)=1423 K and v_(0)=0.25 m·s^(-1).Additionally,the practical HCR processes as T_(0)=1423 K and v_(0)=0.15,0.25,0.35 m·s^(-1) were operated to verify the influence of the hot rolling parameters on the hot deformation stability by the microstructure observation of the final products. 展开更多
关键词 GH4033 superalloy dynamic material model finite element model hot continuous rolling hot deformation stability
下载PDF
Performance Comparison of Two Meta-Model for the Application to Finite Element Model Updating of Structures 被引量:1
11
作者 Yang Liu De-Jun Wang +1 位作者 Jun Ma Yang Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第3期68-78,共11页
To investigate the application of meta-model for finite element( FE) model updating of structures,the performance of two popular meta-model,i. e.,Kriging model and response surface model( RSM),were compared in detail.... To investigate the application of meta-model for finite element( FE) model updating of structures,the performance of two popular meta-model,i. e.,Kriging model and response surface model( RSM),were compared in detail. Firstly,above two kinds of meta-model were introduced briefly. Secondly,some key issues of the application of meta-model to FE model updating of structures were proposed and discussed,and then some advices were presented in order to select a reasonable meta-model for the purpose of updating the FE model of structures. Finally,the procedure of FE model updating based on meta-model was implemented by updating the FE model of a truss bridge model with the measured modal parameters. The results showed that the Kriging model was more proper for FE model updating of complex structures. 展开更多
关键词 finite element model updating of structures META-MODEL kriging model response surface model
下载PDF
Dynamic Characteristics of Inflated Torus Using Finite Element Analysis 被引量:2
12
作者 KAMEL M A 《Computer Aided Drafting,Design and Manufacturing》 2010年第1期15-20,共6页
In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized ... In recent years, inflatable structures have been a subject of interest for space applications such as communication antenna, solar thermal propulsion and entry/landing systems. The inflatable structures characterized by high strength-to-mass ratios, minimal stowage volume, which makes them suitable for cost-effective large space structures. A typical example for the inflatable structure is the inflated torus which often used in order to provide structure support. In this study, our main focus is to understand the dynamic characteristics of an inflated torus in order to formulate an accurate mathematical model suitable for active vibration control applications. A commercial finite element package, ANSYS, is used to model the inflated torus. To verify the model the obtained frequencies and mode shapes are compared with the published results, which are derived using analytical approach, the verification shows a good agreement between the FEM and the analytical results. Based on the verified model, parametric study was investigated; the material thickness increase causes the natural frequencies decrease, while the increase of the inflation pressure simply results in stiffening the ring, which means that the natural frequency increased. The FEM analysis gives an easy and fast way for the vibration analysis of the structures compared with the complicated analytical solutions. 展开更多
关键词 dynamic characteristics inflatable torus finite element modelling (FEM) modal analysis
下载PDF
Mechanistic insights into homogeneous electrocatalytic reaction for energy storage using finite element simulation
13
作者 Peng Song Yan Li Shuang Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期285-296,共12页
The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogene... The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogeneous electrocatalytic reaction between hydroxymethylferrocene(HMF)and L-cysteine is intensively investigated by cyclic voltammetry and square wave voltammetry for which,the secondorder rate constant(k_(ec))of the chemical reaction between HMF^(+)and L-cysteine is determined via a 1D homogeneous electrocatalytic reaction model based on finite element simulation.The corresponding k_(ec)(1.1(mol·m^(-3))^(-1)·s^(-1))is further verified by linear sweep voltammograms under the same model.Square wave voltammetry parameters including potential frequency(f),increment(Estep)and amplitude(ESW)have been comprehensively investigated in terms of the voltammetric waveform transition of homogeneous electrocatalytic reaction.Specifically,the effect of potential frequency and increment is in accordance with the potential scan rate in cyclic voltammetry and the increase of pulsed potential amplitude results in a conspicuous split oxidative peaks phenomenon.Moreover,the proposed methodology of k_(ec)prediction is examined by hydroxyethylferrocene(HEF)and L-cysteine.The present work facilitates the understanding of homogeneous electrocatalytic reaction for energy storage purpose,especially in terms of electrochemical kinetics extraction and flow battery design. 展开更多
关键词 Homogeneous electrocatalytic reaction Electrochemical kinetics Square wave voltammetry finite element modelling Energy storage
下载PDF
Finite element analysis of an all-steel buckling-restrained brace
14
作者 Jiang Tao Dai Junwu +3 位作者 Yang Yongqiang Bai Wen Pang Hui Liu Rongheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期1119-1135,共17页
Typical all-steel buckling-restrained braces(BRBs)usually exhibit obvious local buckling,which is attributed to the lack of longitudinal restraint to the rectangle core plate.To address this issue,all-steel BRBs are p... Typical all-steel buckling-restrained braces(BRBs)usually exhibit obvious local buckling,which is attributed to the lack of longitudinal restraint to the rectangle core plate.To address this issue,all-steel BRBs are proposed,in which two T-shaped steel plates are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar.In order to investigate the factors that characterize the hysterical responses of this device,different finite element(FE)models are developed for the specific context.The FE models are developed based on nonlinear finite element software,which incorporate continuum(shell or brick)elements,large displacement,and deformation formulations.In these FE models,two different steel constitutive models are adopted to precisely reproduce the cyclic response of the BRB component.Meanwhile,comparisons between the numerical and experimental results are conducted to validate the effectiveness and accuracy of the robust FE model.The agreements between experimental observations and numerical predictions demonstrate that the FE method could be utilized for in depth parametric analysis.Furthermore,BRBs with detailed configurations can provide excellent hysteretic behavior and seismic performance through the optimal design process. 展开更多
关键词 steel BRB T-shaped steel finite element model optimal design hysteretic behavior
下载PDF
Free vibration characteristics of sectioned unidirectional/bidirectional functionally graded material cantilever beams based on finite element analysis
15
作者 N.V.VIET W.ZAKI Quan WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第12期1787-1804,共18页
Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be m... Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be made from different materials with possibly different gradients of material properties.The present work proposes models to investigate the free vibration of FGM sectioned beams based on onedimensional(1D)finite element analysis.For this purpose,a sample beam is divided into discrete elements,and the total energy stored in each element during vibration is computed by considering either the Timoshenko or Euler-Bernoulli beam theory.Then,Hamilton’s principle is used to derive the equations of motion for the beam.The effects of material properties and dimensions of FGM sections on the beam’s natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model(TM).The presented model is validated by comparison with three-dimensional(3D)finite element simulations of the first three mode shapes of the beam. 展开更多
关键词 finite element model(FEM) DYNAMICS functionally graded material(FGM) Timoshenko beam theory
下载PDF
2D Finite Element Analysis of Asynchronous Machine Influenced Under Power Quality Perturbations
16
作者 Jasmin Pamela S R.Saranya +5 位作者 V.Indragandhi R.Raja Singh V.Subramaniyaswamy Yuvaraja Teekaraman Shabana Urooj Norah Alwadai 《Computers, Materials & Continua》 SCIE EI 2022年第3期5745-5763,共19页
Asynchronous machines are predominantly preferred in industrial sectors for its reliability.Power quality perturbations have a greater impact on industries;among the different power quality events,voltage fluctuations... Asynchronous machines are predominantly preferred in industrial sectors for its reliability.Power quality perturbations have a greater impact on industries;among the different power quality events,voltage fluctuations are the most common and that may cause adverse effect on machine’s operation since they are longer enduring.The article discusses a numerical technique for evaluating asynchronous motors while taking into account magnetic saturation,losses,leakage flux,and voltage drop.A 2D linear analysis involving a multi-slice time stepping finite element model is used to predict the end effects.As an outcome,the magnetic saturation and losses are estimated using amodified 2D nonlinear time-stepping finite element formulation.The method takes the electromagnetic fields at the ends of the motor into account using limited computer resources.The proposed method will greatly reduce computation timewith limited computer resources for analyzing themachine’s performance with high precision.The analyzed findings assist in preventing voltage variance issues in the power network system and provide suggestions for developing a robust system. 展开更多
关键词 Asynchronous machine finite element model analysis voltage variations power quality multi-slice model
下载PDF
Hip Fracture Risk Assessment Based on Different Failure Criteria Using QCT-Based Finite Element Modeling
17
作者 Hossein Bisheh Yunhua Luo Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2020年第5期567-591,共25页
Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate ... Precise evaluation of hip fracture risk leads to reduce hip fracture occurrence in individuals and assist to check the effect of a treatment.A subject-specific QCT-based finite element model is introduced to evaluate hip fracture risk using the strain energy,von-Mises stress,and von-Mises strain criteria during the single-leg stance and the sideways fall configurations.Choosing a proper failure criterion in hip fracture risk assessment is very important.The aim of this study is to define hip fracture risk index using the strain energy,von Mises stress,and von Mises strain criteria and compare the calculated fracture risk indices using these criteria at the critical regions of the femur.It is found that based on these criteria,the hip fracture risk at the femoral neck and the intertrochanteric region is higher than other parts of the femur,probably due to the larger amount of cancellous bone in these regions.The study results also show that the strain energy criterion gives more reasonable assessment of hip fracture risk based on the bone failure mechanism and the von-Mises strain criterion is more conservative than two other criteria and leads to higher estimate of hip fracture risk indices. 展开更多
关键词 Hip fracture risk finite element model strain energy von Mises stress von Mises strain
下载PDF
Parametric Study of Hip Fracture Risk Using QCT-Based Finite Element Analysis
18
作者 Hossein Bisheh Yunhua Luo Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2022年第4期1349-1369,共21页
Various parameters such as age,height,weight,and body mass index(BMI)influence the hip fracture risk in the elderly which is the most common injury during the sideways fall.This paper presents a parametric study of hi... Various parameters such as age,height,weight,and body mass index(BMI)influence the hip fracture risk in the elderly which is the most common injury during the sideways fall.This paper presents a parametric study of hip fracture risk based on the gender,age,height,weight,and BMI of subjects using the subject-specific QCT-based finite element modelling and simulation of single-leg stance and sideways fall loadings.Hip fracture risk is estimated using the strain energy failure criterion as a combination of bone stresses and strains leading to more accurate and reasonable results based on the bone failure mechanism.Understanding the effects of various parameters on hip fracture risk can help to prescribe more accurate preventive and treatment plans for a community based on the gender,age,height,weight,and BMI of the population.Results of this study show an increase in hip fracture risk with the increase of age,body height,weight,and BMI in both women and men under the single-leg stance and the sideways fall configurations. 展开更多
关键词 Hip fracture risk finite element model strain energy parametric study
下载PDF
Clinical Data-Driven Finite Element Analysis of the Kinetics of Chewing Cycles in Order to Optimize Occlusal Reconstructions Dedicated to Professor Karl Stark Pister for his 95th birthday
19
作者 Simon Martinez Jurgen Lenz +6 位作者 Hans Schindler Willi Wendler Stefan Rues Karl Schweizerhof Sophia Terebesi Nikolaos Nikitas Giannakopoulos Marc Schmitter 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1259-1281,共23页
The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particula... The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particular,to produce interference-free yet chewing-efficient dental restorations.For this,kinetic data must be available,i.e.,movements and deformations under the influence of forces and stresses.In the present study,so-called functional data were collected from healthy volunteers to provide consistent information for proper kinetics.For the latter purpose,biting and chewing forces,electrical muscle activity and jaw movements were registered synchronously,and individual magnetic resonance tomograms(MRI)were prepared.The acquired data were then added to a large complex finite element model of the complete masticatory system using the functional information obtained and individual anatomical geometries so that the kinetics of the chewing process and teeth grinding could be realistically simulated.This allows developing algorithms that optimize computer-aided manufacturing of dental prostheses close to occlusion.In this way,a failure-free function of the dental prosthesis can be guaranteed and its damage during usage can be reduced or prevented even including endosseous implants. 展开更多
关键词 Occlusal design mechanical simulations of mandibular movement finite element model of the complete masticatory system simulation of chewing process and teeth grinding
下载PDF
Spherical-earth finite element model of coseismic slip distribution during the 2010 Mentawai earthquake
20
作者 Anindya Sricandra Prasidya Hidayat Panuntun Muhammad Iqbal Taftazani 《Geodesy and Geodynamics》 CSCD 2021年第2期155-164,共10页
The moment magnitude(MW)7.8 earthquake occurred along the Mentawai seismic region of Sunda Trench on 25 October 2010,which is classified as the tsunami earthquake.The GPS inversion results under the assumption of simp... The moment magnitude(MW)7.8 earthquake occurred along the Mentawai seismic region of Sunda Trench on 25 October 2010,which is classified as the tsunami earthquake.The GPS inversion results under the assumption of simple horizontal layered medium show that the slip near the trench is not apparent,which is inconsistent with our understanding of tsunami earthquake.Here,we construct a spherical-earth finite element model(FEM)to investigate the coseismic slip distribution of the 2010 Mentawai earthquake by geometrically combining the subducting plate with a precise subduction interface.The FEM-based coseismic slip distribution shows that there are three major slip patches on the fault interface,one is located on the shallow region and the other two are located on the deeper part of the fault plane.The largest slip patch is located near the trench with the depth less than 10 km,and the maximum amplitude is about 12 m.This significant near-trench slip is consistent with the tsunami earthquake studies.A more realistic domain of FEM is used to change the coseismic slip distribution,thus significantly improving the fitting degree of the data model.These findings suggest that the FEM-derived Green's function is essential to image a more robust and realistic coseismic slip distribution of the large earthquake in the subduction zone. 展开更多
关键词 The 2010 Mentawai earthquake Tsunami earthquake finite element model
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部