In this paper,size and shape optimization problem of a machine gun system is addressed with an efficient hybrid method,in which a novel and flexible mesh morphing technique is employed to achieve fast parameterization...In this paper,size and shape optimization problem of a machine gun system is addressed with an efficient hybrid method,in which a novel and flexible mesh morphing technique is employed to achieve fast parameterization and modification of complexity structure without going back to CAD for reconstruction of geometric models or to finite element analysis( FEA) for remodeling. Design of experiments( DOE) and response surface method( RSM) are applied to approximate the constitutive parameters of a machine gun system based on experimental tests. Further FEA,secondary development technique and genetic algorithm( GA) are introduced to find all the optimal solutions in one go and the optimal design of the demonstrated machine gun system is obtained. Results of the rigid-flexible coupling dynamic analysis and exterior ballistics calculation validate the proposed methodology,which is relatively time-saving,reliable and has the potential to solve similar problems.展开更多
Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. ...Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. the basic parameters of the generator, the geometry dimensions of the stator and rotor, type and sizes of the slots, coils and windings parameters and the way of windings connection are determined. The finite element model of electromagnetic systems of generator stator and rotor was constructed by Ansoft Maxwe112D3D 12.1, and the transient electromagnetic characteristics of generator was analyzed and simulated. The 3D geometric models of turbo-generator were established respectively by using PROE software, and the dynamic finite element model of generator structure was built by ANSYS workbench 11.0. In addition, the dynamic characteristics of stator iron core, stator frame were calculated respectively. The simulation calculation has shown that the structural parameters, material parameters, and the electromagnetic characteristics parameters for large turbogenerator that are put forward by this paper should be optimal. and the design plan and method suggested by this paper should be feasible. The paper provides an effective solution for the development of larger turbo-generator than 1000 MW.展开更多
Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the ...Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.展开更多
基金Supported by the National Natural Science Foundation of China(51376090,51676099)
文摘In this paper,size and shape optimization problem of a machine gun system is addressed with an efficient hybrid method,in which a novel and flexible mesh morphing technique is employed to achieve fast parameterization and modification of complexity structure without going back to CAD for reconstruction of geometric models or to finite element analysis( FEA) for remodeling. Design of experiments( DOE) and response surface method( RSM) are applied to approximate the constitutive parameters of a machine gun system based on experimental tests. Further FEA,secondary development technique and genetic algorithm( GA) are introduced to find all the optimal solutions in one go and the optimal design of the demonstrated machine gun system is obtained. Results of the rigid-flexible coupling dynamic analysis and exterior ballistics calculation validate the proposed methodology,which is relatively time-saving,reliable and has the potential to solve similar problems.
文摘Through a great deal calculation, the design and simulation analysis of stator parametric and rotor electromagnetic system of 1000MW turbo-generator are performed by using Ansoft Maxwell Rmxprt12.1 software. Besides. the basic parameters of the generator, the geometry dimensions of the stator and rotor, type and sizes of the slots, coils and windings parameters and the way of windings connection are determined. The finite element model of electromagnetic systems of generator stator and rotor was constructed by Ansoft Maxwe112D3D 12.1, and the transient electromagnetic characteristics of generator was analyzed and simulated. The 3D geometric models of turbo-generator were established respectively by using PROE software, and the dynamic finite element model of generator structure was built by ANSYS workbench 11.0. In addition, the dynamic characteristics of stator iron core, stator frame were calculated respectively. The simulation calculation has shown that the structural parameters, material parameters, and the electromagnetic characteristics parameters for large turbogenerator that are put forward by this paper should be optimal. and the design plan and method suggested by this paper should be feasible. The paper provides an effective solution for the development of larger turbo-generator than 1000 MW.
基金supported by the National Natural Science Foundation of China(Nos.50905085 and 91116020)the National Science Foundation for Post-doctoral Scientists of China(No.2012M511263)
文摘Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.