High energy gas fracturing is a simple approach of applying high pressure gas to stimulate wells by gen- erating several radial cracks without creating any other damages to the wells. In this paper, a numerical algori...High energy gas fracturing is a simple approach of applying high pressure gas to stimulate wells by gen- erating several radial cracks without creating any other damages to the wells. In this paper, a numerical algorithm is proposed to quantitatively simulate propagation of these fractures around a pressurized hole as a quasi-static phenomenon. The gas flow through the cracks is assumed as a one-dimensional transient flow, governed by equations of conservation of mass and momentum. The fractured medium is modeled with the extended finite element method, and the stress intensity factor is calculated by the simple, though sufficiently accurate, displacement ex- trapolation method. To evaluate the proposed algorithm, two field tests are simulated and the unknown parameters are determined through calibration. Sensitivity analyses are performed on the main effective parameters. Considering that the level of uncertainty is very high in these types of engineering problems, the results show a good agreement with the experimental data. They are also consistent with the theory that the final crack length is mainly determined by the gas pressure rather than the initial crack length produced by the stress waves.展开更多
By using the Euler-MacLaurin formula, this paper studies the thermodynamic properties of an ideal Fermi gas confined in a D-dimensional rectangular container. The general expressions of the thermodynamic quantities wi...By using the Euler-MacLaurin formula, this paper studies the thermodynamic properties of an ideal Fermi gas confined in a D-dimensional rectangular container. The general expressions of the thermodynamic quantities with the finite-size corrections are given explicitly and the effects of the size and shape of the container on the properties of the system are discussed. It is shown that the corrections of the thermodynamic quantities due to the finite-size effects are significant to be considered for the case of strong degeneracy but negligible for the case of weak degeneracy or non-degeneracy. It is important to find that some familiar conclusions under the thermodynamic limit are no longer valid for the finite-size systems and there are some novel characteristics resulting from the finite-size effects, such as the nonextensivity of the system, the anisotropy of the pressure, and so on.展开更多
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti...In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.展开更多
With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increas...With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature.展开更多
Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to dedu...Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea.展开更多
Permanent magnet brushless DC motors are used for various low-power applications,namely domestic fans,washing machines,mixer grinders and cooling fan applications.This paper focuses on selecting the best laminating ma...Permanent magnet brushless DC motors are used for various low-power applications,namely domestic fans,washing machines,mixer grinders and cooling fan applications.This paper focuses on selecting the best laminating material for the interior permanent magnet brushless DC(IPM BLDC)motor used in the cooling fan of automobiles.Various laminating materials,namely M19-29GA,M800-65A and M43,are tested using finite element analysis.The machine's vital performance metrics,namely the stator current,torque ripple,and hysteresis loss were analyzed in selecting the laminating material.The designed motor is also modelled as a mathematical model from the computed lumped parameters.The performance of the machines was validated through electromagnetic and thermal analysis.展开更多
The safety of natural gas pipeline is often severely threatened by the transverse landslide. At home and abroad, it is the first time to study the safe length of the pipeline when affected by landslide, and take ...The safety of natural gas pipeline is often severely threatened by the transverse landslide. At home and abroad, it is the first time to study the safe length of the pipeline when affected by landslide, and take the safe length of the pipeline as an engineering practical index. Therefore, it is of great significance to study the influence of transverse landslide affecting the safety of natural gas pipeline when a certain length of pipeline is thrusted, and to establish practical index and simulation method for prediction and prevention of the landslide hazards to gas pipeline. Based on the current research results, this study could be divided into three steps: First of all, with the help of ANSYS finite element software, the model of transverse landslide acting on the gas pipeline can be set up, then the length value of gas pipeline safely withstanding transverse landslide can be calculated;Secondly, using the strength reduction method, which is commonly used in the research of landslide stability, can establish three-dimensional model of the landslide and pipes in the ABAQUS finite element software, next, under the same landslide pushed length, the calculation results will be obtained;Finally, to draw reliable conclusions, all calculated results of the former two methods will be linked to synthetically and comparatively analyze, then the length value of common X80 gas pipeline safely bearing transverse landslide can be got. All results can provide some references for engineering and design.展开更多
基金support of Iran National Science Foundation is also gratefully appreciated
文摘High energy gas fracturing is a simple approach of applying high pressure gas to stimulate wells by gen- erating several radial cracks without creating any other damages to the wells. In this paper, a numerical algorithm is proposed to quantitatively simulate propagation of these fractures around a pressurized hole as a quasi-static phenomenon. The gas flow through the cracks is assumed as a one-dimensional transient flow, governed by equations of conservation of mass and momentum. The fractured medium is modeled with the extended finite element method, and the stress intensity factor is calculated by the simple, though sufficiently accurate, displacement ex- trapolation method. To evaluate the proposed algorithm, two field tests are simulated and the unknown parameters are determined through calibration. Sensitivity analyses are performed on the main effective parameters. Considering that the level of uncertainty is very high in these types of engineering problems, the results show a good agreement with the experimental data. They are also consistent with the theory that the final crack length is mainly determined by the gas pressure rather than the initial crack length produced by the stress waves.
基金Project supported by the National Natural Science Foundation of China (Grant No 10875100)
文摘By using the Euler-MacLaurin formula, this paper studies the thermodynamic properties of an ideal Fermi gas confined in a D-dimensional rectangular container. The general expressions of the thermodynamic quantities with the finite-size corrections are given explicitly and the effects of the size and shape of the container on the properties of the system are discussed. It is shown that the corrections of the thermodynamic quantities due to the finite-size effects are significant to be considered for the case of strong degeneracy but negligible for the case of weak degeneracy or non-degeneracy. It is important to find that some familiar conclusions under the thermodynamic limit are no longer valid for the finite-size systems and there are some novel characteristics resulting from the finite-size effects, such as the nonextensivity of the system, the anisotropy of the pressure, and so on.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Reaearch Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.11004007)the Fundamental Research Funds for the Central Universities of China
文摘With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature.
文摘Genetic algorithm finite element method (GA FEM) is applied to the study of tectonic stress field of part of East Asia area. From the observed stress distribution, 2 D elastic plane stress inversion is made to deduce the boundary forces and investigate controlling factors. It is suggested that the continent continent collision is the dominant factor controlling the Chinese tectonic stress field. The ocean continent convergence along the subduction zone is an important factor. There exists tensile boundary force along the marginal sea.
文摘Permanent magnet brushless DC motors are used for various low-power applications,namely domestic fans,washing machines,mixer grinders and cooling fan applications.This paper focuses on selecting the best laminating material for the interior permanent magnet brushless DC(IPM BLDC)motor used in the cooling fan of automobiles.Various laminating materials,namely M19-29GA,M800-65A and M43,are tested using finite element analysis.The machine's vital performance metrics,namely the stator current,torque ripple,and hysteresis loss were analyzed in selecting the laminating material.The designed motor is also modelled as a mathematical model from the computed lumped parameters.The performance of the machines was validated through electromagnetic and thermal analysis.
文摘The safety of natural gas pipeline is often severely threatened by the transverse landslide. At home and abroad, it is the first time to study the safe length of the pipeline when affected by landslide, and take the safe length of the pipeline as an engineering practical index. Therefore, it is of great significance to study the influence of transverse landslide affecting the safety of natural gas pipeline when a certain length of pipeline is thrusted, and to establish practical index and simulation method for prediction and prevention of the landslide hazards to gas pipeline. Based on the current research results, this study could be divided into three steps: First of all, with the help of ANSYS finite element software, the model of transverse landslide acting on the gas pipeline can be set up, then the length value of gas pipeline safely withstanding transverse landslide can be calculated;Secondly, using the strength reduction method, which is commonly used in the research of landslide stability, can establish three-dimensional model of the landslide and pipes in the ABAQUS finite element software, next, under the same landslide pushed length, the calculation results will be obtained;Finally, to draw reliable conclusions, all calculated results of the former two methods will be linked to synthetically and comparatively analyze, then the length value of common X80 gas pipeline safely bearing transverse landslide can be got. All results can provide some references for engineering and design.