期刊文献+
共找到2,766篇文章
< 1 2 139 >
每页显示 20 50 100
Studies on Resource Management of Sanjiang Plain Groundwater with the Analytical Finite Method Based on Square Grid
1
作者 REN Yongtai DENG Hualing XU Dan 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第1期65-68,共4页
This article established groundwater flows differential equation mathematical model of San iiang Plain on the hydrology theory foundation, and used the analysis finite element method to liner change the differential e... This article established groundwater flows differential equation mathematical model of San iiang Plain on the hydrology theory foundation, and used the analysis finite element method to liner change the differential equation into the large-scale system of linear equations, it took linear equations as a part of constraint conditions of the optimized model, carried on the groundwater flow status equation and the optimized model the coupling, and carries on the solution with the Lingo software. The results indicated that this local shallow layer groundwater resources were rich and have the big development potential. But recent years water resources disposition was unreasonable and ground water mining quantity was oversized, these caused the region water flux to assume the drop tendency. 展开更多
关键词 Sanjiang Plain groundwater mathematical model analysis finite element method LINGO
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
2
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 Particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
THE SUPERCLOSENESS OF THE FINITE ELEMENT METHOD FOR A SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEM ON A BAKHVALOV-TYPE MESH IN 2D
3
作者 Chunxiao ZHANG Jin ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1572-1593,共22页
For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ... For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments. 展开更多
关键词 singularly perturbed CONVECTION-DIFFUSION finite element method SUPERCLOSENESS Bakhvalov-type mesh
下载PDF
A Deep Learning Approach to Shape Optimization Problems for Flexoelectric Materials Using the Isogeometric Finite Element Method
4
作者 Yu Cheng Yajun Huang +3 位作者 Shuai Li Zhongbin Zhou Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1935-1960,共26页
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization... A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization. 展开更多
关键词 Shape optimization deep learning flexoelectric structure finite element method isogeometric
下载PDF
Application of the finite analytic numerical method to a flowdependent variational data assimilation
5
作者 Yan Hu Wei Li +2 位作者 Xuefeng Zhang Guimei Liu Liang Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期30-39,共10页
An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection... An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix,which can be achieved by solving the advection-diffusion equation.Because of the directionality of the advection term,the discrete method needs to be chosen very carefully.The finite analytic method is an alternative scheme to solve the advection-diffusion equation.As a combination of analytical and numerical methods,it not only has high calculation accuracy but also holds the characteristic of the auto upwind.To demonstrate its ability,the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method.The more widely used upwind difference method is used as a control approach.The result indicates that the finite analytic method has higher accuracy than the upwind difference method.For the two-dimensional case,the finite analytic method still has a better performance.In the three-dimensional variational assimilation experiment,the finite analytic method can effectively improve analysis field accuracy,and its effect is significantly better than the upwind difference and the central difference method.Moreover,it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently. 展开更多
关键词 finite analytic method advection-diffusion equation data assimilation flow-dependent
下载PDF
A New Isogeometric Finite Element Method for Analyzing Structures
6
作者 Pan Su Jiaxing Chen +1 位作者 Ronggang Yang Jiawei Xiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1883-1905,共23页
High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric fini... High-performance finite element research has always been a major focus of finite element method studies.This article introduces isogeometric analysis into the finite element method and proposes a new isogeometric finite element method.Firstly,the physical field is approximated by uniform B-spline interpolation,while geometry is represented by non-uniform rational B-spline interpolation.By introducing a transformation matrix,elements of types C^(0)and C^(1)are constructed in the isogeometric finite element method.Subsequently,the corresponding calculation formats for one-dimensional bars,beams,and two-dimensional linear elasticity in the isogeometric finite element method are derived through variational principles and parameter mapping.The proposed method combines element construction techniques of the finite element method with geometric construction techniques of isogeometric analysis,eliminating the need for mesh generation and maintaining flexibility in element construction.Two elements with interpolation characteristics are constructed in the method so that boundary conditions and connections between elements can be processed like the finite element method.Finally,the test results of several examples show that:(1)Under the same degree and element node numbers,the constructed elements are almost consistent with the results obtained by traditional finite element method;(2)For bar problems with large local field variations and beam problems with variable cross-sections,high-degree and multi-nodes elements constructed can achieve high computational accuracy with fewer degrees of freedom than finite element method;(3)The computational efficiency of isogeometric finite element method is higher than finite element method under similar degrees of freedom,while as degrees of freedom increase,the computational efficiency between the two is similar. 展开更多
关键词 finite element method isogeometric analysis uniform B-spline non-uniform rational B-spline beam and bar
下载PDF
Analysis of Extended Fisher-Kolmogorov Equation in 2D Utilizing the Generalized Finite Difference Method with Supplementary Nodes
7
作者 Bingrui Ju Wenxiang Sun +1 位作者 Wenzhen Qu Yan Gu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期267-280,共14页
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso... In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem. 展开更多
关键词 Generalized finite difference method nonlinear extended Fisher-Kolmogorov equation Crank-Nicolson scheme
下载PDF
Extended finite element-based cohesive zone method for modeling simultaneous hydraulic fracture height growth in layered reservoirs
8
作者 Lei Yang Baixi Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2960-2981,共22页
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy... In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed. 展开更多
关键词 Hydraulic fracturing Layered reservoir Simultaneous height growth In situ stress Fracture spacing Extended finite element method(XFEM) Cohesive zone method(CZM)
下载PDF
A combined method using Lattice Boltzmann Method(LBM)and Finite Volume Method(FVM)to simulate geothermal reservoirs in Enhanced Geothermal System(EGS)
9
作者 Xiang Gao Tai-lu Li +2 位作者 Yu-wen Qiao Yao Zhang Ze-yu Wang 《Journal of Groundwater Science and Engineering》 2024年第2期132-146,共15页
With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium... With the development of industrial activities,global warming has accelerated due to excessive emission of CO_(2).Enhanced Geothermal System(EGS)utilizes deep geothermal heat for power generation.Although porous medium theory is commonly employed to model geothermal reservoirs in EGS,Hot Dry Rock(HDR)presents a challenge as it consists of impermeable granite with zero porosity,potentially distorting the physical interpretation.To address this,the Lattice Boltzmann Method(LBM)is employed to simulate CO_(2)flow within geothermal reservoirs and the Finite Volume Method(FVM)to solve the energy conservation equation for temperature distribution.This combined method of LBM and FVM is imple-mented using MATLAB.The results showed that the Reynolds numbers(Re)of 3,000 and 8,000 lead to higher heat extraction rates from geothermal reservoirs.However,higher Re values may accelerate thermal breakthrough,posing challenges to EGS operation.Meanwhile,non-equilibrium of density in fractures becomes more pronounced during the system's life cycle,with non-Darcy's law becoming significant at Re values of 3,000 and 8,000.Density stratification due to buoyancy effects significantly impacts temperature distribution within geothermal reservoirs,with buoyancy effects at Re=100 under gravitational influence being noteworthy.Larger Re values(3,000 and 8,000)induce stronger forced convection,leading to more uniform density distribution.The addition of proppant negatively affects heat transfer performance in geothermal reservoirs,especially in single fractures.Practical engineering considerations should determine the quantity of proppant through detailed numerical simulations. 展开更多
关键词 Lattice boltzmann method finite volume method Enhanced geothermal system Geothermal reservoir PROPPANT Re Heat extraction rate
下载PDF
A Full Predictor-Corrector Finite Element Method for the One-Dimensional Heat Equation with Time-Dependent Singularities
10
作者 Jake L. Nkeck 《Journal of Applied Mathematics and Physics》 2024年第4期1364-1382,共19页
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ... The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method. 展开更多
关键词 SINGULARITIES finite Element methods Heat Equation Predictor-Corrector Algorithm
下载PDF
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
11
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale finite Element method MAGNETO-ELECTRO-ELASTIC Multifield Coupling Numerical Base Functions
下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
12
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation Beam Vibration Equation Hermite finite Element method Error Estimation Numerical Simulation
下载PDF
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
13
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 Optimal Control Problem Gradient Recovery Two-Grid finite Element method
下载PDF
High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations 被引量:1
14
作者 Jie Du Yang Yang 《Communications on Applied Mathematics and Computation》 2023年第1期31-63,共33页
In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical ... In this paper,we apply high-order finite difference(FD)schemes for multispecies and multireaction detonations(MMD).In MMD,the density and pressure are positive and the mass fraction of the ith species in the chemical reaction,say zi,is between 0 and 1,withΣz_(i)=1.Due to the lack of maximum-principle,most of the previous bound-preserving technique cannot be applied directly.To preserve those bounds,we will use the positivity-preserving technique to all the zi'is and enforceΣz_(i)=1 by constructing conservative schemes,thanks to conservative time integrations and consistent numerical fluxes in the system.Moreover,detonation is an extreme singular mode of flame propagation in premixed gas,and the model contains a significant stiff source.It is well known that for hyperbolic equations with stiff source,the transition points in the numerical approximations near the shocks may trigger spurious shock speed,leading to wrong shock position.Intuitively,the high-order weighted essentially non-oscillatory(WENO)scheme,which can suppress oscillations near the discontinuities,would be a good choice for spatial discretization.However,with the nonlinear weights,the numerical fluxes are no longer“consistent”,leading to nonconservative numerical schemes and the bound-preserving technique does not work.Numerical experiments demonstrate that,without further numerical techniques such as subcell resolutions,the conservative FD method with linear weights can yield better numerical approximations than the nonconservative WENO scheme. 展开更多
关键词 Weighted essentially non-oscillatory scheme finite difference method Stiff source DETONATIONS Bound-preserving CONSERVATIVE
下载PDF
A finite volume method for global electromagnetic induction forward modeling on collocated unstructured grids 被引量:1
15
作者 Liang Yin ZhengYong Ren +1 位作者 HongBo Yao Cong Yang 《Earth and Planetary Physics》 EI CSCD 2023年第1期57-65,共9页
Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellit... Global electromagnetic induction provides an efficient way to probe the electrical conductivity in the Earth’s deep interior.Owing to the increasing geomagnetic data especially from high-accuracy geomagnetic satellites,inverting the Earth’s three-dimensional conductivity distribution on a global scale becomes attainable.A key requirement in the global conductivity inversion is to have a forward solver with high-accuracy and efficiency.In this study,a finite volume method for global electromagnetic induction forward modeling is developed based on unstructured grids.Arbitrary polyhedral grids are supported in our algorithms to obtain high geometric adaptability.We employ a cell-centered collocated variable arrangement which allows convenient discretization for complex geometries and straightforward implementation of multigrid technique.To validate the method,we test our code with two synthetic models and compare our finite volume results with an analytical solution and a finite element numerical solution.Good agreements are observed between our solution and other results,indicating acceptable accuracy of the proposed method. 展开更多
关键词 global electromagnetic induction mantle electrical conductivity finite volume method unstructured grids
下载PDF
ASYMPTOTICAL STABILITY OF NEUTRAL REACTION-DIFFUSION EQUATIONS WITH PCAS AND THEIR FINITE ELEMENT METHODS
16
作者 韩豪 张诚坚 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1865-1880,共16页
This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their... This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results. 展开更多
关键词 neutral reaction-diffusion equations piecewise continuous arguments asymptotical stability finite element methods numerical experiment
下载PDF
A symplectic finite element method based on Galerkin discretization for solving linear systems
17
作者 Zhiping QIU Zhao WANG Bo ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1305-1316,共12页
We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is ... We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems. 展开更多
关键词 Galerkin finite element method linear system structural dynamic response symplectic difference scheme
下载PDF
A dynamic large-deformation particle finite element method for geotechnical applications based on Abaqus
18
作者 Weihai Yuan Jinxin Zhu +4 位作者 Neng Wang Wei Zhang Beibing Dai Yuanjun Jiang Yuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1859-1871,共13页
In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avo... In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering. 展开更多
关键词 ABAQUS Collapse of granular materials DYNAMICS Large deformation Particle finite element method(PFEM) Rigid strip footing
下载PDF
Efficient Finite Difference/Spectral Method for the Time Fractional Ito Equation Using Fast Fourier Transform Technic
19
作者 Dakang Cen Zhibo Wang Seakweng Vong 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1591-1600,共10页
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c... A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples. 展开更多
关键词 Time fractional Ito equation finite difference method Spectral method STABILITY
下载PDF
Modeling and Simulation of High Frequency Electromagnetics Wave Propagation on Vivaldi Antenna Using Finite Element Method
20
作者 Jean Ndoumbe Nelly Tchuenbou Charles Hubert Kom 《Open Journal of Antennas and Propagation》 2023年第3期49-59,共11页
The simulation of the electromagnetic wave propagation plays an important role in predicting the performance of wireless transmission and communication systems. This research paper performs a numerical simulation usin... The simulation of the electromagnetic wave propagation plays an important role in predicting the performance of wireless transmission and communication systems. This research paper performs a numerical simulation using the finite element method (FEM) to study electromagnetic propagation through both conductive and dielectric media. The simulations are made using the COMSOL Multiphysics software which notably implements the finite element method. The microwave is produced by a Vivaldi antenna at the respective frequencies of 2.6 and 5 GHz and the propagation equation is formulated from Maxwell’s equations. The results obtained show that in the air, strong electric fields are observed in the slot and the micro-strip line for the two frequencies, they are even greater when the wave propagates in the glass and very weak for the copper. The 3D evolutions of the wave in air and glass present comparable values at equal frequencies, the curves being more regular in air (dielectric). The radiation patterns produced for air and glass are directional, with a large main lobe, which is narrower at 5 GHz. For copper, the wave propagation is quite uniform in space, and the radiation patterns show two main lobes with a much larger size at 2.6 GHz than at 5 GHz. The propagation medium would therefore influence the range of values of the gain of the antenna. 展开更多
关键词 Radiated Field Propagation Medium MICROWAVE Vivaldi Antenna finite Element method COMSOL Multiphysics
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部