The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an...The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.展开更多
In many applications a heterogeneous population consists of several subpopulations. When each subpopulation can be adequately modeled by a heteroscedastic single-index model, the whole population is characterized by a...In many applications a heterogeneous population consists of several subpopulations. When each subpopulation can be adequately modeled by a heteroscedastic single-index model, the whole population is characterized by a finite mixture of heteroscedastic single-index models. In this article, we propose an estimation algorithm for fitting this model, and discuss the implementation in detail. Simulation studies are used to demonstrate the performance of the algorithm, and a real example is used to illustrate the application of the model.展开更多
Spatially Constrained Mixture Model(SCMM)is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field(MAP-MRF).It developed its own maximization step to be used within t...Spatially Constrained Mixture Model(SCMM)is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field(MAP-MRF).It developed its own maximization step to be used within this framework.This research has proposed an improvement in the SCMM’s maximization step for segmenting simulated brain Magnetic Resonance Images(MRIs).The improved model is named as the Weighted Spatially Constrained Finite Mixture Model(WSCFMM).To compare the performance of SCMM and WSCFMM,simulated T1-Weighted normal MRIs were segmented.A region of interest(ROI)was extracted from segmented images.The similarity level between the extracted ROI and the ground truth(GT)was found by using the Jaccard and Dice similarity measuring method.According to the Jaccard similarity measuring method,WSCFMM showed an overall improvement of 4.72%,whereas the Dice similarity measuring method provided an overall improvement of 2.65%against the SCMM.Besides,WSCFMM signicantly stabilized and reduced the execution time by showing an improvement of 83.71%.The study concludes that WSCFMM is a stable model and performs better as compared to the SCMM in noisy and noise-free environments.展开更多
Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studie...Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studies have lately focused on finite mixture models as mixing distributions in the mixing mechanism. In the present work, we consider a Normal Variance Mean mix<span>ture model. The mixing distribution is a finite mixture of two special cases of</span><span> Generalised Inverse Gaussian distribution with indexes <span style="white-space:nowrap;">-1/2 and -3/2</span>. The </span><span>parameters of the mixed model are obtained via the Expectation-Maximization</span><span> (EM) algorithm. The iterative scheme is based on a presentation of the normal equations. An application to some financial data has been done.展开更多
Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the...Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed.展开更多
Soil-rock mixture(SRM)filling in fault zone is an inhomogeneous geomaterial,which is composed of soil and rock block.It controls the deformation and stability of the abutment and dam foundation,and threatens the long-...Soil-rock mixture(SRM)filling in fault zone is an inhomogeneous geomaterial,which is composed of soil and rock block.It controls the deformation and stability of the abutment and dam foundation,and threatens the long-term safety of high arch dams.To study the macroscopic and mesoscopic mechanical properties of SRM,the development of a viable mesoscopic numerical simulation method with a mesoscopic model generation technology,and a reasonable parametric model is crucially desired to overcome the limitations of experimental conditions,specimen dimensions,and experiment fund.To this end,this study presents a mesoscopic numerical method for simulating the mechanical behavior of SRM by proposing mesoscopic model generation technology based on its mesostructure features,and a rock parameter model considering size effect.The validity and rationality of the presented mesoscopic numerical method is experimentally verified by the triaxial compression tests with different rock block contents(RBC).The results indicate that the rock block can increase the strength of SRM,and it is proved that the random generation technique and the rock parameter model considering size effect are validated.Furthermore,there are multiple failure surfaces for inhomogeneous geomaterial of SRM,and the angle of the failure zone is no longer 45◦.The yielding zones of the specimen are more likely to occur in thin sections of soil matrix isolated by blocks with the failure path avoiding the rock block.The proposed numerical method is effective to investigate the meso-damage mechanism of SRM.展开更多
<p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><...<p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">s</span></span></span><span><span><span><span style="color:#000000;"> a general framework for deriving models with desirable properties for modelling financial market variables such as exchange rates, equity prices, and interest rates measured over short time intervals, </span><i><span style="color:#000000;">i.e.</span></i><span style="color:#000000;"> daily or weekly. Such data sets are characterized by non-normality and are usually skewed, fat-tailed and exhibit excess kurtosis. </span><span style="color:#000000;">The Generalised Hyperbolic distribution (GHD) introduced by Barndorff-</span><span style="color:#000000;">Nielsen </span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">(1977)</span></span></span><span><span><span><span style="color:#000000;"> which act as Normal variance-mean mixtures with Generalised Inverse Gaussian (GIG) mixing distribution nest a number of special and limiting case distributions. The Normal Inverse Gaussian (NIG) distribution is obtained when the Inverse Gaussian is the mixing distribution, </span><i><span style="color:#000000;">i.e</span></i></span></span></span><span style="color:#000000;"><span style="color:#000000;"><i><span style="color:#000000;">.</span></i></span></span><span><span><span><span style="color:#000000;">, the index parameter of the GIG is</span><span style="color:red;"> <img src="Edit_721a4317-7ef5-4796-9713-b9057bc426fc.bmp" alt="" /></span><span style="color:#000000;">. The NIG is very popular because of its analytical tractability. In the mixing mechanism</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span><span style="color:#000000;"> the mixing distribution characterizes the prior information of the random variable of the conditional distribution. Therefore, considering finite mixture models is one way of extending the work. The GIG is a three parameter distribution denoted by </span><img src="Edit_d21f2e1e-d426-401e-bf8b-f56d268dddb6.bmp" alt="" /></span><span><span style="color:#000000;"> and nest several special and limiting cases. When </span><img src="Edit_ffee9824-2b75-4ea6-a3d2-e048d49b553f.bmp" alt="" /></span><span><span style="color:#000000;">, we have </span><img src="Edit_654ea565-9798-4435-9a59-a0a1a7c282df.bmp" alt="" /></span><span style="color:#000000;"> which is called an Inverse Gaussian (IG) distribution. </span><span><span><span style="color:#000000;">When </span><img src="Edit_b15daf3d-849f-440a-9e4f-7b0c78d519e5.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_08a2088c-f57e-401c-8fb9-9974eec5947a.bmp" alt="" /><span style="color:#000000;">, </span><img src="Edit_130f4d7c-3e27-4937-b60f-6bf6e41f1f52.bmp" alt="" /><span style="color:#000000;">,</span></span><span><span style="color:#000000;"> we have </span><img src="Edit_215e67cb-b0d9-44e1-88d1-a2598dea05af.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_6bf9602b-a9c9-4a9d-aed0-049c47fe8dfe.bmp" alt="" /></span></span><span style="color:red;"><span style="color:#000000;"> </span><span><span style="color:#000000;">and </span><img src="Edit_d642ba7f-8b63-4830-aea1-d6e5fba31cc8.bmp" alt="" /></span></span><span><span style="color:#000000;"> distributions respectively. These distributions are related to </span><img src="Edit_0ca6658e-54cb-4d4d-87fa-25eb3a0a8934.bmp" alt="" /></span><span style="color:#000000;"> and are called weighted inverse Gaussian distributions. In this</span> <span style="color:#000000;">work</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span style="color:#000000;"> we consider a finite mixture of </span><img src="Edit_30ee74b7-0bfc-413d-b4d6-43902ec6c69d.bmp" alt="" /></span></span></span><span><span><span><span><span style="color:#000000;"> and </span><img src="Edit_ba62dff8-eb11-48f9-8388-68f5ee954c00.bmp" alt="" /></span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;"> and show that the mixture is also a weighted Inverse Gaussian distribution and use it to construct a NVMM. Due to the complexity of the likelihood, direct maximization is difficult. An EM type algorithm is provided for the Maximum Likelihood estimation of the parameters of the proposed model. We adopt an iterative scheme which is not based on explicit solution to the normal equations. This subtle approach reduces the computational difficulty of solving the complicated quantities involved directly to designing an iterative scheme based on a representation of the normal equation. The algorithm is easily programmable and we obtained a monotonic convergence for the data sets used.</span></span></span> </p>展开更多
Since its first flight in 2007,the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR(PolSAR)data in very high spatial resolution.It is possible to observe small spatial features in this t...Since its first flight in 2007,the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR(PolSAR)data in very high spatial resolution.It is possible to observe small spatial features in this type of data,offering the opportunity to explore structures in the images.In general,the structured scenes would present multimodal or spiky histograms.The finite mixture model has great advantages in modeling data with irregular histograms.In this paper,a type of important statistics called log-cumulants,which could be used to design parameter estimator or goodness-of-fit tests,are derived for the finite mixture model.They are compared with logcumulants of the texture models.The results are adopted to UAVSAR data analysis to determine which model is better for different land types.展开更多
For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b...For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.展开更多
利用1965—2015年冬半年寒潮过程数据和NCEP/NCAR再分析资料,通过FMM算法聚类分析,将影响我国寒潮路径确定为4类,并统计分析了不同类型路径寒潮的活动变化趋势以及环流特征。研究结果表明:各类路径寒潮的频数、强度、季节分布和年际变...利用1965—2015年冬半年寒潮过程数据和NCEP/NCAR再分析资料,通过FMM算法聚类分析,将影响我国寒潮路径确定为4类,并统计分析了不同类型路径寒潮的活动变化趋势以及环流特征。研究结果表明:各类路径寒潮的频数、强度、季节分布和年际变化存在显著差异,第一类西路转向型寒潮频数最多且逐年减少趋势最大,第三类西北型寒潮强度最大,第四类西路型寒潮在春季频发且变化趋势平缓;在寒潮爆发时刻,500 h Pa温压场配置、风场转变、高层涡度平流和冷暖平流以及地面冷高压分布与寒潮路径的选择密切相关,其中第二类北路型寒潮的低槽、负涡度区和冷平流区偏东分布,第三类则相应偏西。展开更多
A new term involving the rate of pressure change is introduced into the continuity equation of an existing biphasic mixture model. Based on this new continuity equation, a penalized numerical formulation of finite ele...A new term involving the rate of pressure change is introduced into the continuity equation of an existing biphasic mixture model. Based on this new continuity equation, a penalized numerical formulation of finite element method is given. Computational result shows that this new biphasic mixture model can provide better description of the transient response of biological media such as articular cartilage, muscle, and soft tissue.展开更多
基金funded by the National Key Research and Development Program of China(No.2022YFD2200503-02)。
文摘The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.
文摘In many applications a heterogeneous population consists of several subpopulations. When each subpopulation can be adequately modeled by a heteroscedastic single-index model, the whole population is characterized by a finite mixture of heteroscedastic single-index models. In this article, we propose an estimation algorithm for fitting this model, and discuss the implementation in detail. Simulation studies are used to demonstrate the performance of the algorithm, and a real example is used to illustrate the application of the model.
文摘Spatially Constrained Mixture Model(SCMM)is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field(MAP-MRF).It developed its own maximization step to be used within this framework.This research has proposed an improvement in the SCMM’s maximization step for segmenting simulated brain Magnetic Resonance Images(MRIs).The improved model is named as the Weighted Spatially Constrained Finite Mixture Model(WSCFMM).To compare the performance of SCMM and WSCFMM,simulated T1-Weighted normal MRIs were segmented.A region of interest(ROI)was extracted from segmented images.The similarity level between the extracted ROI and the ground truth(GT)was found by using the Jaccard and Dice similarity measuring method.According to the Jaccard similarity measuring method,WSCFMM showed an overall improvement of 4.72%,whereas the Dice similarity measuring method provided an overall improvement of 2.65%against the SCMM.Besides,WSCFMM signicantly stabilized and reduced the execution time by showing an improvement of 83.71%.The study concludes that WSCFMM is a stable model and performs better as compared to the SCMM in noisy and noise-free environments.
文摘Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studies have lately focused on finite mixture models as mixing distributions in the mixing mechanism. In the present work, we consider a Normal Variance Mean mix<span>ture model. The mixing distribution is a finite mixture of two special cases of</span><span> Generalised Inverse Gaussian distribution with indexes <span style="white-space:nowrap;">-1/2 and -3/2</span>. The </span><span>parameters of the mixed model are obtained via the Expectation-Maximization</span><span> (EM) algorithm. The iterative scheme is based on a presentation of the normal equations. An application to some financial data has been done.
文摘Cyber losses in terms of number of records breached under cyber incidents commonly feature a significant portion of zeros, specific characteristics of mid-range losses and large losses, which make it hard to model the whole range of the losses using a standard loss distribution. We tackle this modeling problem by proposing a three-component spliced regression model that can simultaneously model zeros, moderate and large losses and consider heterogeneous effects in mixture components. To apply our proposed model to Privacy Right Clearinghouse (PRC) data breach chronology, we segment geographical groups using unsupervised cluster analysis, and utilize a covariate-dependent probability to model zero losses, finite mixture distributions for moderate body and an extreme value distribution for large losses capturing the heavy-tailed nature of the loss data. Parameters and coefficients are estimated using the Expectation-Maximization (EM) algorithm. Combining with our frequency model (generalized linear mixed model) for data breaches, aggregate loss distributions are investigated and applications on cyber insurance pricing and risk management are discussed.
基金supported by the Chinese National Natural Science Foundation(51739006)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJKY19_0433)the Fundamental Research Funds for the Central Universities(2019B65714).
文摘Soil-rock mixture(SRM)filling in fault zone is an inhomogeneous geomaterial,which is composed of soil and rock block.It controls the deformation and stability of the abutment and dam foundation,and threatens the long-term safety of high arch dams.To study the macroscopic and mesoscopic mechanical properties of SRM,the development of a viable mesoscopic numerical simulation method with a mesoscopic model generation technology,and a reasonable parametric model is crucially desired to overcome the limitations of experimental conditions,specimen dimensions,and experiment fund.To this end,this study presents a mesoscopic numerical method for simulating the mechanical behavior of SRM by proposing mesoscopic model generation technology based on its mesostructure features,and a rock parameter model considering size effect.The validity and rationality of the presented mesoscopic numerical method is experimentally verified by the triaxial compression tests with different rock block contents(RBC).The results indicate that the rock block can increase the strength of SRM,and it is proved that the random generation technique and the rock parameter model considering size effect are validated.Furthermore,there are multiple failure surfaces for inhomogeneous geomaterial of SRM,and the angle of the failure zone is no longer 45◦.The yielding zones of the specimen are more likely to occur in thin sections of soil matrix isolated by blocks with the failure path avoiding the rock block.The proposed numerical method is effective to investigate the meso-damage mechanism of SRM.
文摘<p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">s</span></span></span><span><span><span><span style="color:#000000;"> a general framework for deriving models with desirable properties for modelling financial market variables such as exchange rates, equity prices, and interest rates measured over short time intervals, </span><i><span style="color:#000000;">i.e.</span></i><span style="color:#000000;"> daily or weekly. Such data sets are characterized by non-normality and are usually skewed, fat-tailed and exhibit excess kurtosis. </span><span style="color:#000000;">The Generalised Hyperbolic distribution (GHD) introduced by Barndorff-</span><span style="color:#000000;">Nielsen </span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">(1977)</span></span></span><span><span><span><span style="color:#000000;"> which act as Normal variance-mean mixtures with Generalised Inverse Gaussian (GIG) mixing distribution nest a number of special and limiting case distributions. The Normal Inverse Gaussian (NIG) distribution is obtained when the Inverse Gaussian is the mixing distribution, </span><i><span style="color:#000000;">i.e</span></i></span></span></span><span style="color:#000000;"><span style="color:#000000;"><i><span style="color:#000000;">.</span></i></span></span><span><span><span><span style="color:#000000;">, the index parameter of the GIG is</span><span style="color:red;"> <img src="Edit_721a4317-7ef5-4796-9713-b9057bc426fc.bmp" alt="" /></span><span style="color:#000000;">. The NIG is very popular because of its analytical tractability. In the mixing mechanism</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span><span style="color:#000000;"> the mixing distribution characterizes the prior information of the random variable of the conditional distribution. Therefore, considering finite mixture models is one way of extending the work. The GIG is a three parameter distribution denoted by </span><img src="Edit_d21f2e1e-d426-401e-bf8b-f56d268dddb6.bmp" alt="" /></span><span><span style="color:#000000;"> and nest several special and limiting cases. When </span><img src="Edit_ffee9824-2b75-4ea6-a3d2-e048d49b553f.bmp" alt="" /></span><span><span style="color:#000000;">, we have </span><img src="Edit_654ea565-9798-4435-9a59-a0a1a7c282df.bmp" alt="" /></span><span style="color:#000000;"> which is called an Inverse Gaussian (IG) distribution. </span><span><span><span style="color:#000000;">When </span><img src="Edit_b15daf3d-849f-440a-9e4f-7b0c78d519e5.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_08a2088c-f57e-401c-8fb9-9974eec5947a.bmp" alt="" /><span style="color:#000000;">, </span><img src="Edit_130f4d7c-3e27-4937-b60f-6bf6e41f1f52.bmp" alt="" /><span style="color:#000000;">,</span></span><span><span style="color:#000000;"> we have </span><img src="Edit_215e67cb-b0d9-44e1-88d1-a2598dea05af.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_6bf9602b-a9c9-4a9d-aed0-049c47fe8dfe.bmp" alt="" /></span></span><span style="color:red;"><span style="color:#000000;"> </span><span><span style="color:#000000;">and </span><img src="Edit_d642ba7f-8b63-4830-aea1-d6e5fba31cc8.bmp" alt="" /></span></span><span><span style="color:#000000;"> distributions respectively. These distributions are related to </span><img src="Edit_0ca6658e-54cb-4d4d-87fa-25eb3a0a8934.bmp" alt="" /></span><span style="color:#000000;"> and are called weighted inverse Gaussian distributions. In this</span> <span style="color:#000000;">work</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span style="color:#000000;"> we consider a finite mixture of </span><img src="Edit_30ee74b7-0bfc-413d-b4d6-43902ec6c69d.bmp" alt="" /></span></span></span><span><span><span><span><span style="color:#000000;"> and </span><img src="Edit_ba62dff8-eb11-48f9-8388-68f5ee954c00.bmp" alt="" /></span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;"> and show that the mixture is also a weighted Inverse Gaussian distribution and use it to construct a NVMM. Due to the complexity of the likelihood, direct maximization is difficult. An EM type algorithm is provided for the Maximum Likelihood estimation of the parameters of the proposed model. We adopt an iterative scheme which is not based on explicit solution to the normal equations. This subtle approach reduces the computational difficulty of solving the complicated quantities involved directly to designing an iterative scheme based on a representation of the normal equation. The algorithm is easily programmable and we obtained a monotonic convergence for the data sets used.</span></span></span> </p>
基金This work has been supported in part by the Shenzhen Science&Technology Program[grant number JSGG20150512145714247]the State Key Program of National Natural Science of China[grant number 61331016]National Key Research Plan of China[grant number 2016YFC0500201-07].
文摘Since its first flight in 2007,the UAVSAR instrument of NASA has acquired a large number of fully Polarimetric SAR(PolSAR)data in very high spatial resolution.It is possible to observe small spatial features in this type of data,offering the opportunity to explore structures in the images.In general,the structured scenes would present multimodal or spiky histograms.The finite mixture model has great advantages in modeling data with irregular histograms.In this paper,a type of important statistics called log-cumulants,which could be used to design parameter estimator or goodness-of-fit tests,are derived for the finite mixture model.They are compared with logcumulants of the texture models.The results are adopted to UAVSAR data analysis to determine which model is better for different land types.
基金National Natural Science Foundation of China(61673279)。
文摘For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.
文摘利用1965—2015年冬半年寒潮过程数据和NCEP/NCAR再分析资料,通过FMM算法聚类分析,将影响我国寒潮路径确定为4类,并统计分析了不同类型路径寒潮的活动变化趋势以及环流特征。研究结果表明:各类路径寒潮的频数、强度、季节分布和年际变化存在显著差异,第一类西路转向型寒潮频数最多且逐年减少趋势最大,第三类西北型寒潮强度最大,第四类西路型寒潮在春季频发且变化趋势平缓;在寒潮爆发时刻,500 h Pa温压场配置、风场转变、高层涡度平流和冷暖平流以及地面冷高压分布与寒潮路径的选择密切相关,其中第二类北路型寒潮的低槽、负涡度区和冷平流区偏东分布,第三类则相应偏西。
文摘A new term involving the rate of pressure change is introduced into the continuity equation of an existing biphasic mixture model. Based on this new continuity equation, a penalized numerical formulation of finite element method is given. Computational result shows that this new biphasic mixture model can provide better description of the transient response of biological media such as articular cartilage, muscle, and soft tissue.