期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Parallelized Implementation of the Finite Particle Method for Explicit Dynamics in GPU 被引量:6
1
作者 Jingzhe Tang Yanfeng Zheng +2 位作者 Chao Yang Wei Wang Yaozhi Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期5-31,共27页
As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle d... As a novel kind of particle method for explicit dynamics,the finite particle method(FPM)does not require the formation or solution of global matrices,and the evaluations of the element equivalent forces and particle displacements are decoupled in nature,thus making this method suitable for parallelization.The FPM also requires an acceleration strategy to overcome the heavy computational burden of its explicit framework for time-dependent dynamic analysis.To this end,a GPU-accelerated parallel strategy for the FPM is proposed in this paper.By taking advantage of the independence of each step of the FPM workflow,a generic parallelized computational framework for multiple types of analysis is established.Using the Compute Unified Device Architecture(CUDA),the GPU implementations of the main tasks of the FPM,such as evaluating and assembling the element equivalent forces and solving the kinematic equations for particles,are elaborated through careful thread management and memory optimization.Performance tests show that speedup ratios of 8,25 and 48 are achieved for beams,hexahedral solids and triangular shells,respectively.For examples consisting of explicit dynamic analyses of shells and solids,comparisons with Abaqus using 1 to 8 CPU cores validate the accuracy of the results and demonstrate a maximum speed improvement of a factor of 11.2. 展开更多
关键词 finite particle method GPU parallel computing explicit dynamics
下载PDF
A GPU-Based Parallel Algorithm for 2D Large Deformation Contact Problems Using the Finite Particle Method 被引量:1
2
作者 Wei Wang Yanfeng Zheng +2 位作者 Jingzhe Tang Chao Yang Yaozhi Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期595-626,共32页
Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation fr... Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation from total motion in large deformation problems.In addition,the decoupled procedures of the FPM make it suitable for parallel computing,which may provide an approach to solve time-consuming issues.In this study,a graphics processing unit(GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems.The fundamentals of the FPM for planar solids are first briefly introduced,including the equations of motion of particles and the internal forces of quadrilateral elements.Subsequently,a linked-list data structure suitable for parallel processing is built,and parallel global and local search algorithms are presented for contact detection.The contact forces are then derived and directly exerted on particles.The proposed method is implemented with main solution procedures executed in parallel on a GPU.Two verification problems comprising large deformation frictional contacts are presented,and the accuracy of the proposed algorithm is validated.Furthermore,the algorithm’s performance is investigated via a large-scale contact problem,and the maximum speedups of total computational time and contact calculation reach 28.5 and 77.4,respectively,relative to commercial finite element software Abaqus/Explicit running on a single-core central processing unit(CPU).The contact calculation time percentage of the total calculation time is only 18%with the FPM,much smaller than that(50%)with Abaqus/Explicit,demonstrating the efficiency of the proposed method. 展开更多
关键词 finite particle method graphics processing unit(GPU) parallel computing contact algorithm LARGE
下载PDF
A stable implicit nodal integration-based particle finite element method(N-PFEM)for modelling saturated soil dynamics 被引量:1
3
作者 Liang Wang Xue Zhang +1 位作者 Jingjing Meng Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2172-2183,共12页
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene... In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. 展开更多
关键词 particle finite element method Nodal integration Dynamic saturated media Second-order cone programming(SOCP)
下载PDF
Finite particle method for kinematically indeterminate bar assemblies 被引量:14
4
作者 Ying YU Yao-zhi LUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第5期669-676,共8页
This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combina... This study presents a structural analysis algorithm called the finite particle method (FPM) for kinematically indeterminate bar assemblies. Different from the traditional analysis method, FPM is based on the combination of the vector mechanics and numerical calculations. It models the analyzed domain composed of finite particles. Newton's second law is adopted to describe the motions of all particles. A convected material flame and explicit time integration for the solution procedure is also adopted in this method. By using the FPM, there is no need to solve any nonlinear equations, to calculate the stiffness matrix or equilibrium matrix, which is very helpful in the analysis of kinematically indeterminate structures. The basic formulations for the space bar are derived, following its solution procedures for bar assemblies. Three numerical examples are analyzed using the FPM. Results obtained from both the straight pretension cable and the suspension cable assembly show that the FPM can produce a more accurate analysis result. The motion simulation of the four-bar space assembly demonstrates the capability of this method in the analysis ofkinematically indeterminate structures. 展开更多
关键词 finite particle method (FPM) Vector mechanics Convected material frame Explicit time integrations Kinematicallyindeterminate bar assemblies
原文传递
Geotechnical particle finite element method for modeling of soilstructure interaction under large deformation conditions 被引量:1
5
作者 Josep Maria Carbonell Lluís Monforte +2 位作者 Matteo O.Ciantia Marcos Arroyo Antonio Gens 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期967-983,共17页
The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems tha... The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay. 展开更多
关键词 particle finite element method(PFEM) Structured soils Nonlocal elastoplasticity Contact domain method Soil penetration problems
下载PDF
A dynamic large-deformation particle finite element method for geotechnical applications based on Abaqus
6
作者 Weihai Yuan Jinxin Zhu +4 位作者 Neng Wang Wei Zhang Beibing Dai Yuanjun Jiang Yuan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1859-1871,共13页
In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avo... In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering. 展开更多
关键词 ABAQUS Collapse of granular materials DYNAMICS Large deformation particle finite element method(PFEM) Rigid strip footing
下载PDF
GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures
7
作者 Wei WANG Yanfeng ZHENG +2 位作者 Jingzhe TANG Chao YANG Yaozhi LUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第12期1120-1130,共11页
A graphics processing unit(GPU)-accelerated vector-form particle-element method,i.e.,the finite particle method(FPM),is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computati... A graphics processing unit(GPU)-accelerated vector-form particle-element method,i.e.,the finite particle method(FPM),is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive contact calculations.A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural elastoplastic behaviors.The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is performed between adjacent cells to improve search efficiency.A connected list data structure is used for storing contact particles to facilitate the parallel contact search procedure.The contact constraints are enforced by explicitly applying normal and tangential contact forces to the contact particles.The proposed method is fully accelerated by GPU-based parallel computing.After verification,the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing two large-scale contact examples.The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for the overall computation and 340 for contact calculations.Therefore,the proposed method is shown to be effective and efficient. 展开更多
关键词 Graphics processing unit(GPU) Parallel acceleration Elastoplastic contact Contact search finite particle method(FPM)
原文传递
Research on Surface Peeling in Cu-Fe-P Alloy
8
作者 苏娟华 董企铭 +2 位作者 李贺军 刘平 康布熙 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第S1期160-163,共4页
Surface peeling of Cu-Fe-P lead frame alloy was analyzed using plane strain model and elastoplastic finite element method. Based on the characterization of microstructure at surface peeling in finish rolled Cu-Fe-P le... Surface peeling of Cu-Fe-P lead frame alloy was analyzed using plane strain model and elastoplastic finite element method. Based on the characterization of microstructure at surface peeling in finish rolled Cu-Fe-P lead frame alloy, the stress and strain distributions of the interface between Cu matrix and Fe particle are studied. Results indicate that the equivalent strain mismatch 6.9% between Cu matrix and Fe particle and the intense stress concentration at the interface have influence on surface peeling generation. The crack is prone to the electrical conductivity decreasing of Cu-Fe-P alloy and surface peeling on finish rolling. 展开更多
关键词 surface peeling Cu-Fe-P alloy MICRO-STRUCTURE finite element method Fe particle
下载PDF
Numerical simulation of three dimensional concrete printing based on a unified fluid and solid mechanics formulation
9
作者 Janis REINOLD Koussay DAADOUCH Günther MESCHKE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第4期491-515,共25页
Deformation control constitutes one of the main technological challenges in three dimensional(3D)concrete printing,and it presents a challenge that must be addressed to achieve a precise and reliable construction proc... Deformation control constitutes one of the main technological challenges in three dimensional(3D)concrete printing,and it presents a challenge that must be addressed to achieve a precise and reliable construction process.Model-based information of the expected deformations and stresses is required to optimize the construction process in association with the specific properties of the concrete mix.In this work,a novel thermodynamically consistent finite strain constitutive model for fresh and early-age 3D-printable concrete is proposed.The model is then used to simulate the 3D concrete printing process to assess layer shapes,deformations,forces acting on substrate layers and prognoses of possible structural collapse during the layer-by-layer buildup.The constitutive formulation is based on a multiplicative split of the deformation gradient into elastic,aging and viscoplastic parts,in combination with a hyperelastic potential and considering evolving material properties to account for structural buildup or aging.One advantage of this model is the stress-update-scheme,which is similar to that of small strain plasticity and therefore enables an efficient integration with existing material routines.The constitutive model uses the particle finite element method,which serves as the simulation framework,allowing for modeling of the evolving free surfaces during the extrusion process.Computational analyses of three printed layers are used to create deformation plots,which can then be used to control the deformations during 3D concrete printing.This study offers further investigations,on the structural level,focusing on the potential structural collapse of a 3D printed concrete wall.The capability of the proposed model to simulate 3D concrete printing processes across the scales—from a few printed layers to the scale of the whole printed structure—in a unified fashion with one constitutive formulation,is demonstrated. 展开更多
关键词 particle finite element method 3D concrete printing multiplicative split additive manufacturing elastoviscoplasticity
原文传递
An efficient numerical shape analysis for light weight membrane structures 被引量:12
10
作者 Chao YANG Yan-bin SHEN Yao-zhi LUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第4期255-271,共17页
The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle me... The determination of initial equilibrium shapes is a common problem in research work and engineering applications related to membrane structures. Using a general structural analysis framework of the finite particle method (FPM), this paper presents the first application of the FPM and a recently-developed membrane model to the shape analysis of light weight mem- branes. The FPM is rooted in vector mechanics and physical viewpoints. It discretizes the analyzed domain into a group of parti- cles linked by elements, and the motion of the free particles is directly described by Newton's second law while the constrained ones follow the prescribed paths. An efficient physical modeling procedure of handling geometric nonlinearity has been developed to evaluate the particle interaction forces. To achieve the equilibrium shape as fast as possible, an integral-form, explicit time integration scheme has been proposed for solving the equation of motion. The equilibrium shape can be obtained naturally without nonlinear iterative correction and global stiffness matrix integration. Two classical curved surfaces of tension membranes pro- duced under the uniform-stress condition are presented to verify the accuracy and efficiency of the proposed method. 展开更多
关键词 Tension membranes finite particle method (FPM) Shape analysis Explicit time integration Initial equilibriumshape
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部