There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite wi...There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.展开更多
In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a ...In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.展开更多
Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of th...Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of ^4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the grmmd state For systems consisted of 32, 64 and 128 ^4He atoms, respectively, We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.展开更多
For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) e...For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.展开更多
The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin-...The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin--orbit coupling due to bulk-inversion asymmetry is taken into account, the energy gap Eg of the edge states features an oscillating exponential decay as a function of the strip width of the inverted HgTe quantum well. In this paper, we investigate the effects of the interface between a topological insulator and a normal insulator on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. Two different types of boundary conditions, i.e., the symmetric and asymmetric geometries, are considered. It is found that due to the existence of the interface between topological insulator and normal insulator this oscillatory pattern on the exponential decay induced by bulk-inversion asymmetry is modulated by the width of normal insulator regions. With the variation of the width of normal insulator regions, the shift of the Dirac point of the edge states in the spectrum and the energy gap Eg closing point in the oscillatory pattern can occur. Additionally, the effect of the spin-orbit coupling due to structure-inversion asymmetry on the finite size effects is also investigated.展开更多
A comprehensive study on Raman spectroscopy with different excitation wavelengths, sample sizes, and sample shapes for optic phonons (OPs) and acoustic phonons (APs) in polar and non-polar nano-semiconductors has ...A comprehensive study on Raman spectroscopy with different excitation wavelengths, sample sizes, and sample shapes for optic phonons (OPs) and acoustic phonons (APs) in polar and non-polar nano-semiconductors has been performed. The study affirms that the finite size effect does not appear in the OPs of polar nano-semiconductors, while it exists in all other types of phonons. The absence of the FSE is confirmed to originate from the long-range FrShlieh interaction and the breaking of translation symmetry. The result indicates that the Raman spectra of OPs cannot be used as a method to characterize the scale and crystalline property of polar nano-semiconductors.展开更多
With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge...With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO 2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices.展开更多
For some models of relevance in the social sciences we review some exam-ples in which system size plays an important role in the final outcome of the dynamics.We discuss the conditions under which changes of behavior ...For some models of relevance in the social sciences we review some exam-ples in which system size plays an important role in the final outcome of the dynamics.We discuss the conditions under which changes of behavior can appear only when the number of agents in the model takes a finite value.Those changes of behavior can be related to the apparent phase transitions that appear in some physical models.We show examples in the Galam's model of opinion transmission and the Axelrod's model of culture formation stressing the role that the network of interactions has on the main results of both models.Finally,we present the phenomenon of system-size stochastic resonance by which a forcing signal(identified as an advertising agent)is optimally amplified by a population of the right(intermediate)size.Our work stresses the role that the system size has in the dynamics of social systems and the inappropriateness of taking the thermodynamic limit for these systems.展开更多
Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are ...Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.展开更多
The four-probe technique is widely used in the characterization of electrical properties of solids and thin films. To investigate the influence of finite size probes with non-planar contact on the standard four-probe ...The four-probe technique is widely used in the characterization of electrical properties of solids and thin films. To investigate the influence of finite size probes with non-planar contact on the standard four-probe method, we have proposed an image method to simulate the potential distribution within the specimen. The numerical results show that for infinitely thick samples, the standard method can only provide accurate determination of resistivity (relative error below 1%) when the ratio of the average inter-electrode spacing to the diameter of the probe is greater than 3. We have also found that disregarding the probe size brings a less dominate error than that introduced by the approximate formula, when the sample's thickness is close to the inter-electrode spacing.展开更多
Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will ca...Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will causestatistical fluctuations.In this paper,we apply absolutely statistical fluctuation to amend the yield and error rate of thequantum state.The relationship between exchanged number of quantum signals and key generation rate is analyzed inour simulation,which offers a useful reference for experiment.展开更多
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base ...The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base material and configuration, the structural displacement and maximum axial stress of micro-rod of lattice structures with different sizes of microstructure are analyzed and compared.It is pointed out that different from the traditional mathematical homogenization method, EMsFEM is suitable for analyzing the structures which is constituted with lattice materials and composed of quantities of finite-sized micro-rods.The minimum weight design of structures composed of lattice material is studied with downscaling calculation of EMsFEM under stress constraints of micro-rods. The optimal design results show that the weight of the structure increases with the decrease of the size of basic sub-unit cells. The paper presents a new approach for analysis and optimization of lattice materials in complex engineering constructions.展开更多
A stochastic local limited one-dimensional rice-pile model is numerically investigated. The distributions for avalanche sizes have a clear power-law behavior and it displays a simple finite size scaling. We obtain the...A stochastic local limited one-dimensional rice-pile model is numerically investigated. The distributions for avalanche sizes have a clear power-law behavior and it displays a simple finite size scaling. We obtain the avalanche exponents Ts= 1.54±0.10,βs = 2.17±0.10 and TT = 1.80±0.10, βT =1.46 ± 0.10. This self-organized critical model belongs to the same universality class with the Oslo rice-pile model studied by K. Christensen et al. [Phys. Rev. Lett. 77 (1996) 107], a rice-pile model studied by L.A.N. Amaral et al. [Phys. Rev. E 54 (1996) 4512], and a simple deterministic self-organized critical model studied by M.S. Vieira [Phys. Rev. E 61 (2000) 6056].展开更多
The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation sys...The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities.展开更多
It is pointed out that the finite-size effect is not negligible in locating the critical point of quantum colordynamics (QCD) phase transitions at current relativistic heavy ion collisions. The finite-size scaling f...It is pointed out that the finite-size effect is not negligible in locating the critical point of quantum colordynamics (QCD) phase transitions at current relativistic heavy ion collisions. The finite-size scaling form of the critical related observable is suggested. Its fixed point behavior at critical incident energy can be served as a reliable identification of a critical point and nearby boundary of QCD phase transition. How to experimentally find the fixed point behavior is demonstrated by using 3D-Ising model as an example. The validity of the method at finite detector acceptances at RHIC is also discussed.展开更多
Dynamics of ions in biological ion channels has been classically analyzed using several types of Poisson-Nernst Planck (PNP) equations. However, due to complex interaction between individual ions and ions with the cha...Dynamics of ions in biological ion channels has been classically analyzed using several types of Poisson-Nernst Planck (PNP) equations. However, due to complex interaction between individual ions and ions with the channel walls, minimal incorporation of these interaction factors in the models to describe the flow phenomena accurately has been done. In this paper, we aim at formulating a modified PNP equation which constitutes finite size effects to capture ions interactions in the channel using Lennard Jonnes (LJ) potential theory. Particularly, the study examines existence and uniqueness of the approximate analytical solutions of the mPNP equations, First, by obtaining the priori energy estimate and providing solution bounds, and finally constructing the approximate solutions and establishing its convergence in a finite dimensional subspace in <em>L</em><sup>2</sup>, the approximate solution of the linearized mPNP equations was found to converge to the analytical solution, hence proof of existence.展开更多
We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to comp...We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.展开更多
A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconse...A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.展开更多
A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighb...A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.
基金Project supported by the National Natural Science Foundation of China (No.10176003).
文摘In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.
基金National Natural Science Foundation of China and the China Academy of Engineering Physics under Grant No.10676025(NSAF)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,the Ministry of Education
文摘Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of ^4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the grmmd state For systems consisted of 32, 64 and 128 ^4He atoms, respectively, We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of the Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of the Higher Education of China(Grant No.20134208110001)
文摘For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in University of the Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘The finite size effect in a two-dimensional topological insulator can induce an energy gap Eg in the spectrum of helical edge states for a strip of finite width. In a recent work, it has been found that when the spin--orbit coupling due to bulk-inversion asymmetry is taken into account, the energy gap Eg of the edge states features an oscillating exponential decay as a function of the strip width of the inverted HgTe quantum well. In this paper, we investigate the effects of the interface between a topological insulator and a normal insulator on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. Two different types of boundary conditions, i.e., the symmetric and asymmetric geometries, are considered. It is found that due to the existence of the interface between topological insulator and normal insulator this oscillatory pattern on the exponential decay induced by bulk-inversion asymmetry is modulated by the width of normal insulator regions. With the variation of the width of normal insulator regions, the shift of the Dirac point of the edge states in the spectrum and the energy gap Eg closing point in the oscillatory pattern can occur. Additionally, the effect of the spin-orbit coupling due to structure-inversion asymmetry on the finite size effects is also investigated.
基金Project supported by the National Basic Research Program of China (Grants Nos. 2009CB929403 and 2012CB825700)the National Natural Science Foundation of China (Grants Nos. 10774006 and 60876002)
文摘A comprehensive study on Raman spectroscopy with different excitation wavelengths, sample sizes, and sample shapes for optic phonons (OPs) and acoustic phonons (APs) in polar and non-polar nano-semiconductors has been performed. The study affirms that the finite size effect does not appear in the OPs of polar nano-semiconductors, while it exists in all other types of phonons. The absence of the FSE is confirmed to originate from the long-range FrShlieh interaction and the breaking of translation symmetry. The result indicates that the Raman spectra of OPs cannot be used as a method to characterize the scale and crystalline property of polar nano-semiconductors.
基金The National Natural Science Foundation of China(No.61774014)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYZZ15_0331)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB510060)
文摘With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO 2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices.
基金support from MCyT(Spain)and FEDER(EU)through projects FIS2004-5073 and FIS2004-953.
文摘For some models of relevance in the social sciences we review some exam-ples in which system size plays an important role in the final outcome of the dynamics.We discuss the conditions under which changes of behavior can appear only when the number of agents in the model takes a finite value.Those changes of behavior can be related to the apparent phase transitions that appear in some physical models.We show examples in the Galam's model of opinion transmission and the Axelrod's model of culture formation stressing the role that the network of interactions has on the main results of both models.Finally,we present the phenomenon of system-size stochastic resonance by which a forcing signal(identified as an advertising agent)is optimally amplified by a population of the right(intermediate)size.Our work stresses the role that the system size has in the dynamics of social systems and the inappropriateness of taking the thermodynamic limit for these systems.
基金supported by the National Natural Science Foundation of China(Grant No.11032008)the Youth Fund of Taiyuan University of Technology
文摘Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.
基金Project supported by the Innovation Project of the Shanghai Institute of Technical Physics,CAS(No.CXJJ-Q-DX-57)
文摘The four-probe technique is widely used in the characterization of electrical properties of solids and thin films. To investigate the influence of finite size probes with non-planar contact on the standard four-probe method, we have proposed an image method to simulate the potential distribution within the specimen. The numerical results show that for infinitely thick samples, the standard method can only provide accurate determination of resistivity (relative error below 1%) when the ratio of the average inter-electrode spacing to the diameter of the probe is greater than 3. We have also found that disregarding the probe size brings a less dominate error than that introduced by the approximate formula, when the sample's thickness is close to the inter-electrode spacing.
基金Supported by the National Basic Research Program (973) of China under Grant No.2010CB923200Chinese Universities Scientific Fund BUPT2009RC0709
文摘Decoy state method quantum key distribution (QKD) is one of the promising practical solutions for BB84QKD with coherent light pulses.The number of data-set size in practical QKD protocol is always finite,which will causestatistical fluctuations.In this paper,we apply absolutely statistical fluctuation to amend the yield and error rate of thequantum state.The relationship between exchanged number of quantum signals and key generation rate is analyzed inour simulation,which offers a useful reference for experiment.
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
基金supported by the National Natural Science Foundation of China(11372060,10902018,91216201,and 11326005)the National Basic Research Program of China(2011CB610304)the Major National Science and Technology Project(2011ZX02403-002)
文摘The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base material and configuration, the structural displacement and maximum axial stress of micro-rod of lattice structures with different sizes of microstructure are analyzed and compared.It is pointed out that different from the traditional mathematical homogenization method, EMsFEM is suitable for analyzing the structures which is constituted with lattice materials and composed of quantities of finite-sized micro-rods.The minimum weight design of structures composed of lattice material is studied with downscaling calculation of EMsFEM under stress constraints of micro-rods. The optimal design results show that the weight of the structure increases with the decrease of the size of basic sub-unit cells. The paper presents a new approach for analysis and optimization of lattice materials in complex engineering constructions.
基金supported by the Science Foundation of Henan University of Science and Technology under Grant Nos.05-032 and 2006QN033
文摘A stochastic local limited one-dimensional rice-pile model is numerically investigated. The distributions for avalanche sizes have a clear power-law behavior and it displays a simple finite size scaling. We obtain the avalanche exponents Ts= 1.54±0.10,βs = 2.17±0.10 and TT = 1.80±0.10, βT =1.46 ± 0.10. This self-organized critical model belongs to the same universality class with the Oslo rice-pile model studied by K. Christensen et al. [Phys. Rev. Lett. 77 (1996) 107], a rice-pile model studied by L.A.N. Amaral et al. [Phys. Rev. E 54 (1996) 4512], and a simple deterministic self-organized critical model studied by M.S. Vieira [Phys. Rev. E 61 (2000) 6056].
基金Project supported by the Major Projects of the China National Social Science Fund(Grant No.11&ZD154)
文摘The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities.
基金Supported by National Natural Science Foundation of China(10835005,11221504,11005046)the MOE of China for Doctoral Site(20120144110001)
文摘It is pointed out that the finite-size effect is not negligible in locating the critical point of quantum colordynamics (QCD) phase transitions at current relativistic heavy ion collisions. The finite-size scaling form of the critical related observable is suggested. Its fixed point behavior at critical incident energy can be served as a reliable identification of a critical point and nearby boundary of QCD phase transition. How to experimentally find the fixed point behavior is demonstrated by using 3D-Ising model as an example. The validity of the method at finite detector acceptances at RHIC is also discussed.
文摘Dynamics of ions in biological ion channels has been classically analyzed using several types of Poisson-Nernst Planck (PNP) equations. However, due to complex interaction between individual ions and ions with the channel walls, minimal incorporation of these interaction factors in the models to describe the flow phenomena accurately has been done. In this paper, we aim at formulating a modified PNP equation which constitutes finite size effects to capture ions interactions in the channel using Lennard Jonnes (LJ) potential theory. Particularly, the study examines existence and uniqueness of the approximate analytical solutions of the mPNP equations, First, by obtaining the priori energy estimate and providing solution bounds, and finally constructing the approximate solutions and establishing its convergence in a finite dimensional subspace in <em>L</em><sup>2</sup>, the approximate solution of the linearized mPNP equations was found to converge to the analytical solution, hence proof of existence.
基金The project supported by National Natural Science Foundation of China under Grant No. 50272022
文摘We consider the earthquake model on a random graph. A detailed analysis of the probability distribution of the size of the avalanches will be given. The model with different inhomogeneities is studied in order to compare the critical behavior of different systems. The results indicate that with the increase of the inhomogeneities, the avalanche exponents reduce, i.e., the different numbers of defects cause different critical behaviors of the system. This is virtually ascribed to the dynamical perturbation.
文摘A two-variable earthquake model on a quenched random graph is established here. It can be seen as a generalization of the OFC models. We numerically study the critical behavior of the model when the system is nonconservative: the result indicates that the model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling. We compare our mode/with the mode/ introduced by Stefano Lise and Maya Paczuski [Phys. Rev. Lett. 88 (2002) 228301], it is proved that they are not in the same universality class.
文摘A simplified Olami-Feder-Christensen model on a random network has been studied. We propose a new toppling rule -- when there is an unstable site toppling, the energy of the site is redistributed to its nearest neighbors randomly not averagely. The simulation results indicate that the model displays self-organized criticality when the system is conservative, and the avalanche size probability distribution of the system obeys finite size scaling. When the system is nonconservative, the model does not display scaling behavior. Simulation results of our model with different nearest neighbors q is also compared, which indicates that the spatial topology does not alter the critical behavior of the system.