We present a sufficient and necessary condition for the subshift of finite type to be a measure-preserving transformation or to be a strong mixing measure-preserving transformation with respect to the Hausdorff measur...We present a sufficient and necessary condition for the subshift of finite type to be a measure-preserving transformation or to be a strong mixing measure-preserving transformation with respect to the Hausdorff measure. It is proved that a strong mixing subshift of finite type has a chaotic set with full Hausdorff measure.展开更多
In this paper, we construct a special class of subshifts of finite type. By studying the spectral radius of the transfer matrix associated with the subshift of finite type, we obtain an estimation of its topological e...In this paper, we construct a special class of subshifts of finite type. By studying the spectral radius of the transfer matrix associated with the subshift of finite type, we obtain an estimation of its topological entropy. Interestingly, we find that the topological entropy of this class of subshifts of finite type converges monotonically to log(n + 1) (a constant only depends on the structure of the transfer matrices) as the increasing of the order of the transfer matrices.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 60763009)
文摘We present a sufficient and necessary condition for the subshift of finite type to be a measure-preserving transformation or to be a strong mixing measure-preserving transformation with respect to the Hausdorff measure. It is proved that a strong mixing subshift of finite type has a chaotic set with full Hausdorff measure.
基金Supported by National Science Foundation of China(Grant No.11371346)
文摘In this paper, we construct a special class of subshifts of finite type. By studying the spectral radius of the transfer matrix associated with the subshift of finite type, we obtain an estimation of its topological entropy. Interestingly, we find that the topological entropy of this class of subshifts of finite type converges monotonically to log(n + 1) (a constant only depends on the structure of the transfer matrices) as the increasing of the order of the transfer matrices.