期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Congruences for finite triple harmonic sums 被引量:1
1
作者 FU Xu-dan ZHOU Xia CAI Tian-xin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期946-948,共3页
Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is... Zhao (2003a) first established a congruence for any odd prime p〉3, S(1,1,1 ;p)=-2Bp-3 (mod p), which holds when p=3 evidently. In this paper, we consider finite triple harmonic sum S(α,β, γ,ρ) (modp) is considered for all positive integers α,β, γ. We refer to w=α+β+ γ as the weight of the sum, and show that if w is even, S(α,β, γ,ρ)=0 (mod p) for p≥w+3; if w is odd, S(α,β, γ,ρ)=-rBp-w (mod p) for p≥w, here r is an explicit rational number independent ofp. A congruence of Catalan number is obtained as a special case. 展开更多
关键词 finite triple harmonic sums Recursive relation Bernoulli numbers Catalan numbers
下载PDF
Pythagoreans Figurative Numbers: The Beginning of Number Theory and Summation of Series 被引量:2
2
作者 Ravi P. Agarwal 《Journal of Applied Mathematics and Physics》 2021年第8期2038-2113,共76页
In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their... In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their computation through simple recurrence relations, patterns and properties, and mutual relationships which have led to curious results in the field of elementary number theory. Further, for each type of figurative numbers we shall show that the addition of first finite numbers and infinite addition of their inverses often require new/strange techniques. We sincerely hope that besides experts, students and teachers of mathematics will also be benefited with this article. 展开更多
关键词 Figurative Numbers Patterns and Properties RELATIONS sums of finite and Infinite Series HISTORY
下载PDF
Kloosterman sums with multiplicative coefficients 被引量:1
3
作者 GONG Ke JIA ChaoHua 《Science China Mathematics》 SCIE CSCD 2016年第4期653-660,共8页
Let f(n)be a multiplicative function satisfying |f(n)|≤1,q(≤N^2)be a positive integer and a be an integer with(a,q)= 1.In this paper,we shall prove that ∑n≤N(n,q)=1f(n)e(an/q)■(1/2)(τ(q)/q)N loglog(6N)+ q^(1/4+... Let f(n)be a multiplicative function satisfying |f(n)|≤1,q(≤N^2)be a positive integer and a be an integer with(a,q)= 1.In this paper,we shall prove that ∑n≤N(n,q)=1f(n)e(an/q)■(1/2)(τ(q)/q)N loglog(6N)+ q^(1/4+ε/2)N^(2/1)(log(6N))^(1/2)+N/(1/2)(loglog(6N)),where n is the multiplicative inverse of n such that nn ≡ 1(mod q),e(x)= exp(2πix),and τ(·)is the divisor function. 展开更多
关键词 Kloosterman sum multiplicative function finite version of Vinogradov's inequality
原文传递
Two Inequalities for Convex Functions 被引量:2
4
作者 PingZhiYUAN HaiBoCHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第1期193-196,共4页
Let a_0 < a_1 < … < a_n be positive integers with sums Σ_(i=0)~n∈_ia_i(∈_i = 0,1) distinct. P. Erdos conjectured that Σ_(i=0)~n 1/a_i ≤ Σ_(i=0)~n 1/2~i. Thebest known result along this line is that of ... Let a_0 < a_1 < … < a_n be positive integers with sums Σ_(i=0)~n∈_ia_i(∈_i = 0,1) distinct. P. Erdos conjectured that Σ_(i=0)~n 1/a_i ≤ Σ_(i=0)~n 1/2~i. Thebest known result along this line is that of Chen: Let f be any given convex decreasing function on[A, B] with α_0, α_1, …, α_n , β_0, β_1, …, β_n being real numbers in [A, B] with α_0 ≤α_1 ≤ … ≤ α_n, Σ_(i=0)~n α_i ≥ Σ_(i=0)~n β_i, k = 0, …, n. Then Σ_(i=0)~n f(α_i) ≤Σ_(i=0)~n f(β_i). In this paper, we obtain two generalizations of the above result; each is ofspecial interest in itself. We prove:Theorem 1 Let f and g be two given non-negative convex decreasing functions on [A, B], and α_0,α_1, …, α_n , β_0, β_1, …, β_n, α'_0, α'_1, …, α'_n , β'_0, β'_1, …, β'_n be realnumbers in [A, B] with α'_0 ≤ α'_1 ≤ … ≤ α_n. Then Σ_(i=0)~n f(α_i)g(α'_i) ≤ Σ_(i=0)~nf(β_i)g(β'_i), k = 0, …, n. Theorem 2 Let f be any given convex decreasing function on [A, B]with k_0, k_1, …, k_n being nonnegative real numbers and α_0, α_1, …, α_n , β_0, β_1, …,β_n being real numbers in [A, B] with α_0 ≤ α_1 ≤ … ≤ α_n, Σ_(i=0)~t k_i α_i ≥ Σ_(i=0)~tk_iβ_i, t = 0, …, n. Then Σ_(i=0)~t k_if(α_i) ≤ Σ_(i=0)~t k_if_(β_i). 展开更多
关键词 Convex functions finite sums Limits INEQUALITIES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部