期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
An adaptive finite-difference method for seismic traveltime modeling based on 3D eikonal equation
1
作者 Bao-Ping Qiao Qing-Qing Li +2 位作者 Wei-Guang He Dan Zhao Qu-Bo Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期195-205,共11页
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m... 3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications. 展开更多
关键词 3D eikonal equation Accurate traveltimes Global fast sweeping 3D inhomogeneous media Adaptive finite-difference method
下载PDF
A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media 被引量:1
2
作者 贺英 韩波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1495-1504,共10页
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi... In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media. 展开更多
关键词 porous media wavelet multiresolution method numerical simulation fluid-saturated finite-difference method
下载PDF
Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method 被引量:1
3
作者 马秀荣 徐林 +1 位作者 常世元 张双根 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期190-197,共8页
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the... This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered. 展开更多
关键词 three-pulse photon echo Maxwell-Bloch equations finite-difference time-domain method
下载PDF
Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method 被引量:1
4
作者 窦虎 马红梅 孙玉宝 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期117-121,共5页
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ... The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change. 展开更多
关键词 finite-difference time-domain method blue phase liquid crystal display in-plane switching convergence effect
下载PDF
USE OF FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR CALCULATING EM ABSORPTION IN LOSSY DIELECTRIC SCATTERER
5
作者 王长清 陈金元 《Journal of Electronics(China)》 1991年第4期357-362,共6页
The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy... The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy absorption and its distribution in homogeneousand layered homogenous lossy dielectric spheres are presented,and a comparison of these resultswith analytical solution is given.The calculation is carried out for dielectric cylinder on conduct-ing ground as well,and the results are compared with the image theory.All the computationsshew that the finite-difference time-domain method can give satisfactory results. 展开更多
关键词 LOSSY DIELECTRIC SCATTERER Electromagnetic ABSORPTION finite-difference timedomain method
下载PDF
Numerical Solution of a Problem of Thermal Stresses of a Magnetothermoelastic Cylinder with Rotation by Finite-Difference Method
6
作者 F.S.Bayones A.M.Abd-Alla A.M.Farhan 《Computers, Materials & Continua》 SCIE EI 2021年第9期3339-3352,共14页
The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation,open or closed circuit,thermal and mechanical boundary conditions.The outer and inner surfaces o... The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation,open or closed circuit,thermal and mechanical boundary conditions.The outer and inner surfaces of the cylinder are subjected to both mechanical and thermal boundary conditions.A The transient coupled thermoelasticity in an infinite cylinder with its base abruptly exposed to a heat flux of a decaying exponential function of time is devised solve by the finite-difference method.The fundamental equations’system is solved by utilizing an implicit finite-difference method.This current method is a second-order accurate in time and space;it is also unconditionally stable.To illustrate the present model’s efficiency,we consider a suitable material and acquire the numerical solution of temperature,displacement components,and the components of stresses with time t and through the radial of an infinite cylinder.The results indicate that the effect of coupled thermoelasticity,magnetic field,and rotation on the temperature,stresses,and displacement is quite pronounced.In order to illustrate and verify the analytical developments,the numerical solution of partial differential equations,stress components,displacement components and temperature is carried out and computer simulated results are presented graphically.This study is helpful in the development of piezoelectric devices. 展开更多
关键词 THERMOELASTICITY thermal stress finite-difference method non-homogeneous material ROTATION magnetic field
下载PDF
P-and S-wavefield simulations using both the firstand second-order separated wave equations through a high-order staggered grid finite-difference method
7
作者 Chao-ying Bai Xin Wang Cai-xia Wang 《Earthquake Science》 2013年第2期83-98,共16页
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this... In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements. 展开更多
关键词 finite-difference method Staggeredgrid First-order separate elastic wave equation Second-order separate elastic wave equation Multiple arrival tracking
下载PDF
An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
8
作者 魏晓琨 邵维 +2 位作者 石胜兵 张勇 王秉中 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期74-82,共9页
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra... An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method. 展开更多
关键词 conformal scheme locally one-dimensional(LOD) finite-difference time-domain(FDTD) method numerical dispersion unconditional stab
下载PDF
IMPROVED LOCALLY CONFORMAL FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR EDGE INCLINED SLOTS IN A FINITE WALL THICKNESS WAVEGUIDE
9
作者 LiLong ZhangYu LiangChanghong 《Journal of Electronics(China)》 2004年第3期229-235,共7页
An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness wav... An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness waveguide. ILC-FDTD not only removes tile instability of the original locally conformal FDTD algorithm, but also improves the computational accuracy by locally modifying magnetic field update equations and the virtual iterative electric fields accordlng to the complexity of tile slot fringe fields. The mutual coupling between two edge inclined slots can also be analyzed by ILC-FDTD effectively. 展开更多
关键词 Improved Locally Conformal finite-difference Time-Domain (ILC-FDTD) method Edge inclined slots
下载PDF
3D finite-difference modeling algorithm and anomaly features of ZTEM 被引量:10
10
作者 Wang Tao Tan Han-Dong. +3 位作者 Li Zhi-Qiang Wang Kun-Peng Hu Zhi-Ming Zhang Xing-Dong 《Applied Geophysics》 SCIE CSCD 2016年第3期553-560,582,共9页
The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the M... The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion. 展开更多
关键词 Z-Axis tipper electromagnetic finite-difference method TIPPER three-dimensional forward modeling airbome electromagnetic
下载PDF
Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method 被引量:4
11
作者 DeYao Zhang WenYong Pan +3 位作者 DingHui Yang LingYun Qiu XingPeng Dong WeiJuan Meng 《Earth and Planetary Physics》 CSCD 2021年第2期149-157,共9页
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim... The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures. 展开更多
关键词 THREE-DIMENSION frequency-domain NAD method forward modeling full waveform inversion
下载PDF
Acoustic viscoelastic modeling by frequency-domain boundary element method 被引量:1
12
作者 Xizhu Guan Li-Yun Fu Weijia Sun 《Earthquake Science》 CSCD 2017年第2期97-105,共9页
Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element method... Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method. 展开更多
关键词 Viscoelastic media Viscoelastic boundary element method frequency-domain implementation Viscoelastic numerical modeling
下载PDF
An Investigation of Buckled of Column on Liner Elastic foundation by Using Finite-Difference Mode
13
作者 Huan Luo QinghuaYang 《International Journal of Technology Management》 2014年第8期162-163,共2页
The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in th... The use of columns on elastic foundation is very common in Civil Engineering, like bridge pier, the foundation of the buildings etc. So, it will be useful to find the critical load for the structure, the problem in this paper will be solved by Finite-Difference Mode, that' s simple and has an extensive use. The way it works is that by dividing the component into many units. Finite-difference methods (FDM) are numerical methods for anoroximating, the solutions to differential eauations usine finite difference equations to approximate derivatives. 展开更多
关键词 finite-difference methods (FDM) BUCKLING liner function buckling load
下载PDF
Construction of Conservative Numerical Fluxes for the Entropy Split Method
14
作者 Björn Sjögreen H.C.Yee 《Communications on Applied Mathematics and Computation》 2023年第2期653-678,共26页
The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in... The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in conjunction with summation-by-parts(SBP)difference boundary closure of(Gerritsen and Olsson in J Comput Phys 129:245-262,1996;Olsson and Oliger in RIACS Tech Rep 94.01,1994;Yee et al.in J Comp Phys 162:33-81,2000).Sj?green and Yee(J Sci Comput)recently proved that the entropy split method is entropy conservative and stable.Stand-ard high-order spatial central differencing as well as high order central spatial dispersion relation preserving(DRP)spatial differencing is part of the entropy stable split methodol-ogy framework.The current work is our first attempt to derive a high order conservative numerical flux for the non-conservative portion of the entropy splitting of the Euler flux derivatives.Due to the construction,this conservative numerical flux requires higher oper-ations count and is less stable than the original semi-conservative split method.However,the Tadmor entropy conservative(EC)method(Tadmor in Acta Numerica 12:451-512,2003)of the same order requires more operations count than the new construction.Since the entropy split method is a semi-conservative skew-symmetric splitting of the Euler flux derivative,a modified nonlinear filter approach of(Yee et al.in J Comput Phys 150:199-238,1999,J Comp Phys 162:3381,2000;Yee and Sj?green in J Comput Phys 225:910934,2007,High Order Filter Methods for Wide Range of Compressible flow Speeds.Proceedings of the ICOSAHOM09,June 22-26,Trondheim,Norway,2009)is proposed in conjunction with the entropy split method as the base method for problems containing shock waves.Long-time integration of 2D and 3D test cases is included to show the com-parison of these new approaches. 展开更多
关键词 finite-difference method Entropy conservation Entropy splitting Shock capturing
下载PDF
3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method 被引量:4
15
作者 黄鑫 殷长春 +3 位作者 曹晓月 刘云鹤 张博 蔡晶 《Applied Geophysics》 SCIE CSCD 2017年第3期419-430,461,462,共14页
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, e... The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology. 展开更多
关键词 Spectral-element method ANISOTROPY frequency-domain AEM GLL interpolation basis function forward m odeling
下载PDF
Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method 被引量:3
16
作者 孟庆鑫 胡祥云 +1 位作者 潘和平 周峰 《Applied Geophysics》 SCIE CSCD 2017年第1期175-186,192,共13页
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular... We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets. 展开更多
关键词 Surface-hole transient electromagnetic method multicomponent response analysis transient electric field three-dimensional finite-difference time-domain method discrete image method
下载PDF
Improved absorbing boundary condition based on linear interpolation for ADI-FDTD method 被引量:1
17
作者 赵嘉宁 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期289-293,共5页
With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) meth... With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD. 展开更多
关键词 alternating-direction-implicit finite-difference time- domain ADI-FDTD method absorbing boundary condition (ABC) linear interpolation phase velocity nonuniform cell
下载PDF
2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data 被引量:1
18
作者 李文奔 曾昭发 +3 位作者 李静 陈雄 王坤 夏昭 《Applied Geophysics》 SCIE CSCD 2016年第1期37-47,218,共12页
Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is d... Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method. 展开更多
关键词 frequency-domain airborne electromagnetic finite element method 2.5D geoelectric model damped least-squares method
下载PDF
Three-dimensional land FD-CSEM forward modeling using edge finite-element method 被引量:3
19
作者 LIU Jian-xin LIU Peng-mao TONG Xiao-zhong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期131-140,共10页
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve... A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion. 展开更多
关键词 three-dimensional model frequency-domain electromagnetic method horizontal electric dipole forward modeling edge finite-element
下载PDF
Methods for estimating rotational components of seismic ground motion and their numerical comparisons 被引量:1
20
作者 Chang Chen Yun Wang +2 位作者 Yongxiang Wei Shuilong Li Qisheng Zhang 《Earthquake Science》 2020年第4期201-208,共8页
Rotational components play an important role in natural earthquake research,engineering seismic investigation,building monitoring,seismic exploration and other fields.Traditional researches mainly focus on three trans... Rotational components play an important role in natural earthquake research,engineering seismic investigation,building monitoring,seismic exploration and other fields.Traditional researches mainly focus on three translational components,but less on rotational ones.As the precision of rotational sensing techniques has increased,many scholars have paid more attention to the seismic rotational motions.Because the rotational observations are not very popular before and now,approximately converting the translational components into rotational components is utilized in rotation analysis.Based on numerical six-component seismic data with the finite difference method,we compare three different conversion methods,the travelling-wave,frequency-domain and the difference method,to analyze their characteristics and feasibilities when they are applied to estimate rotational components with translational observations. 展开更多
关键词 rotational components travelling-wave method frequency-domain method difference method
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部