The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is di...A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.展开更多
Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead...Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead profilegeometric modeling method through the isosceles trapezoid function is proposed to build the FE model of theWAAMprocess. Firstly, a straight-line model for overlapping beads based on the parabola function was establishedto calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace theparabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-basedmulti-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model wasconfirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlappingmodels. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of thesingle-layer eight-bead deposition process show that the simulation results of the above two models agree with theexperimental results. At the same time, the proposed isosceles trapezoid-based overlappingmodels are all straightlineprofiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency andshorten the simulation calculation time. The innovative modeling method proposed in this study can provide anefficient and high-precision geometricmodelingmethod forWAAMpart FE coupled thermal-mechanical analysis.展开更多
This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations a...This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications.展开更多
Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficien...Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.展开更多
In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and ...In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and quantification of Zn-induced porosity during the GTAW process of Fe–Al joints.The OES measurements were recorded as a function of weld current,welding speed,and input waveform.The OES measurements revealed significant line emissions from Zn-I in 460–640 nm and Ar-I in 680–800 nm wavelength ranges in all experimental settings.The OES coupled CR model approach for Zn-I line emission enabled the simultaneous determination of both essential discharge parameters i.e.electron temperature and electron density.Further,these predictions were used to estimate the Zn-induced porosity using OES-actinometry on Zn-I emission lines using Ar as actinometer gas.The OES-actinometry results were in good agreement with porosity data derived from an independent approach,i.e.x-ray radiography images.The current study shows that OES-based techniques can provide an efficient route for real-time monitoring of weld quality and estimate porosity during the GTAW process of dissimilar metal joints.展开更多
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at diffe...Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at different angles, is assumed to follow a lithological interface and to experience either compression or shear. The stress associated with the destruction shows an asymmetrical pattern with different distances from the highest stress sites to the fault plane in the hanging and foot walls. As the dip angle decreases,the high-stress zone becomes wider in the hanging wall but its width changes negligibly in the foot wall.The length of the simulated fault and the deformation type affect only the magnitude of maximum stress,which remains asymmetrical relative to the fault plane. The Lh/Lfratio, where Lhand Lfare the widths of high-stress zones in the hanging and foot walls of the fault, respectively, is inversely proportional to the fault plane dip. The arithmetic mean of this ratio over different fault lengths in fractures subject to compression changes from 0.29 at a dip of 80°to 1.67 at 30°. In the case of shift displacement, ratios are increasing to 1.2 and 2.94, respectively.Usually they consider vertical fault planes and symmetry in a damage zone of faults. Following that assumption may cause errors in reconstructions of stress and fault patterns in areas of complex structural setting. According geological data, we know the structures are different and asymmetric in hanging and foot walls of fault. Thus, it is important to quantify zones of that asymmetry. The modeling results have to be taken into account in studies of natural faults, especially for practical applications in seismic risk mapping, engineering geology, hydrogeology, and tectonics.展开更多
The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was devel...The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.展开更多
To predict the behavior of geogrids embedded in sand under pullout loading conditions, the two dimensional plane-stress finite element model was presented. The interactions between soil and geogrid were simulated as ...To predict the behavior of geogrids embedded in sand under pullout loading conditions, the two dimensional plane-stress finite element model was presented. The interactions between soil and geogrid were simulated as non-linear springs, and the stiffness of the springs was determined from simple tests in the specially designed pullout box. The predicted behavior of the geogrid under pullout load agrees well with the observed data including the load-displacement properties, the displacement distribution along the longitudinal direction and the mobilization of the frictional and bearing resistance. (Edited author abstract) 8 Refs.展开更多
Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressur...Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressure field are obtained by solving the model equations with the finite-element method. By analyzing bottom hole pressure curves and the fluid flow in the pressure field, seven flow stages can be recognized on the curves. An upscaling method is developed to compare with the dual-porosity model (DPM). The comparisons results show that the DPM overestimates the inter-porosity coefficient ), and the storage factor w. The analysis results show that fracture conductivity plays a leading role in the fluid flow. Matrix permeability influences the beginning time of flow from the matrix to fractures. Fractures density is another important parameter controlling the flow. The fracture linear flow is hidden under the large fracture density. The pressure propagation is slower in the direction of larger fracture density.展开更多
This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical l...This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.展开更多
A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of ...A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of vacancy and antisite were also calculated. The present calculations are in agreement with the experimental data and the theoretical results obtained by other authors.展开更多
Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study ...Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.展开更多
A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average la...A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average lamellar spacing of the Al Al 3Fe eutectic alloy and the content fields ahead of the solidifying interface under different growth rates were calculated. Directional solidification experiments were carried out in order to prove the modification of the modeling. The experimental results are in relatively good agreement with the calculations.展开更多
A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces...A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces the application of SELFSReM4 in evaluating activities of the components in C-Mn-Fe-Si system without SiC precipitation.展开更多
During the solidification process of binary Al Fe alloy under centrifugal casting, the primary phase of Al 3Fe migrates along the radius because of the density difference between the primary phase and the liquid alloy...During the solidification process of binary Al Fe alloy under centrifugal casting, the primary phase of Al 3Fe migrates along the radius because of the density difference between the primary phase and the liquid alloy. Therefore the temperature and concentration field are affected significantly by both the fluid flow and the solid phase migration. In order to take this factor into consideration, a two phase flow numerical model has been established in column coordinate to depict the solidification process of Al Fe alloy under centrifugal casting according to the feature that there exists the solid phase migration during the process. Thus the solidification process of Al Fe alloy under centrifugal casting has been described much more pertinently. [展开更多
By introducing aparameter of difference in ferrite formation temperature between binary Fe-C and multicomponent system,and referring to the thermodynamic model for Fe-C binary system,a simplified thermodynamic model f...By introducing aparameter of difference in ferrite formation temperature between binary Fe-C and multicomponent system,and referring to the thermodynamic model for Fe-C binary system,a simplified thermodynamic model for pro-eutectoid ferrite formation in Fe-ΣXiC multicomponent structural steels(Xi=Mn,Si,Mo,Cr,Ni or Ti,etc)was suggested.The comparison of the calculated Ae3 temperatures with the measured data of steels 42 shows that the relative standard deviation and root-mean-square(RMS)error between them are only 0.71% and 8.92 K,respectively.However,the deviations between the same measured data and the values calculated from the superelement model are as high as 1.86% and 23.83 K,respectively.It can be concluded that the simplified thermodynamic model for pro-eutectoid ferrite formation in multicomponent structural steels is acceptable and the calculated Ae3 temperatures are in good agreement with the experimental data.展开更多
Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season a...Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season are computed to drive the 3D model of Fe and Mn in which the processes of advection, diffusion, redox, sorption, desorption, deposition, and re suspension are included. The model has been calibrated by matching observed fluid, suspended solids, and total concentrations of Fe and Mn in the water column and in the sediment, successively. The model simulated both horizontal and vertical gradients of Fe and Mn in Arha Reservoir. It was found that Fe and especially Mn stratify in accordance with the stratification of DO during summer. The redox cycles across the water sediment interface has a principal role in the rise of Fe and Mn concentrations in the overlying water. It was also found that Fe and Mn loadings from the tributaries have a carryover effect on the water quality through a secondary contamination in the reservoir.展开更多
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金Program for New Century Excellent Talents in University(No. NCET-08-0118)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092110049)
文摘A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.
基金the National Natural Science Foundation of China(Grant No.51705287)the Scientific Research Foundation of Hubei Provincial Education Department(Grant No.D20211203).
文摘Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead profilegeometric modeling method through the isosceles trapezoid function is proposed to build the FE model of theWAAMprocess. Firstly, a straight-line model for overlapping beads based on the parabola function was establishedto calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace theparabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-basedmulti-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model wasconfirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlappingmodels. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of thesingle-layer eight-bead deposition process show that the simulation results of the above two models agree with theexperimental results. At the same time, the proposed isosceles trapezoid-based overlappingmodels are all straightlineprofiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency andshorten the simulation calculation time. The innovative modeling method proposed in this study can provide anefficient and high-precision geometricmodelingmethod forWAAMpart FE coupled thermal-mechanical analysis.
文摘This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications.
基金National High Technology Research and Development Program(863 Program)(No.2006AA06Z105,2007AA06Z134)
文摘Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.
基金the Ministry of Human Resources and Development(MHRD),Government of India,for providing HTRA fellowshipthe support by the SERB,India,for listed Grants(Nos.CRG/2018/000419,CVD/2020/000458,and SB/S2/RJN-093/2015)+1 种基金Core Research Grant,India(No.CRG/2020/005089)IIT Tirupati,India(No.MEE/18-19/008/NFSG/DEGA)。
文摘In this study,we employed a non-invasive approach based on the collisional radiative(CR)model and optical emission spectroscopy(OES)measurements for the characterization of gas tungsten arc welding(GTAW)discharge and quantification of Zn-induced porosity during the GTAW process of Fe–Al joints.The OES measurements were recorded as a function of weld current,welding speed,and input waveform.The OES measurements revealed significant line emissions from Zn-I in 460–640 nm and Ar-I in 680–800 nm wavelength ranges in all experimental settings.The OES coupled CR model approach for Zn-I line emission enabled the simultaneous determination of both essential discharge parameters i.e.electron temperature and electron density.Further,these predictions were used to estimate the Zn-induced porosity using OES-actinometry on Zn-I emission lines using Ar as actinometer gas.The OES-actinometry results were in good agreement with porosity data derived from an independent approach,i.e.x-ray radiography images.The current study shows that OES-based techniques can provide an efficient route for real-time monitoring of weld quality and estimate porosity during the GTAW process of dissimilar metal joints.
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
文摘Stresses in a block around a dipping fracture simulating a damage zone of a fault are reconstructed by finite-element modeling. A fracture corresponding to a fault of different lengths, with its plane dipping at different angles, is assumed to follow a lithological interface and to experience either compression or shear. The stress associated with the destruction shows an asymmetrical pattern with different distances from the highest stress sites to the fault plane in the hanging and foot walls. As the dip angle decreases,the high-stress zone becomes wider in the hanging wall but its width changes negligibly in the foot wall.The length of the simulated fault and the deformation type affect only the magnitude of maximum stress,which remains asymmetrical relative to the fault plane. The Lh/Lfratio, where Lhand Lfare the widths of high-stress zones in the hanging and foot walls of the fault, respectively, is inversely proportional to the fault plane dip. The arithmetic mean of this ratio over different fault lengths in fractures subject to compression changes from 0.29 at a dip of 80°to 1.67 at 30°. In the case of shift displacement, ratios are increasing to 1.2 and 2.94, respectively.Usually they consider vertical fault planes and symmetry in a damage zone of faults. Following that assumption may cause errors in reconstructions of stress and fault patterns in areas of complex structural setting. According geological data, we know the structures are different and asymmetric in hanging and foot walls of fault. Thus, it is important to quantify zones of that asymmetry. The modeling results have to be taken into account in studies of natural faults, especially for practical applications in seismic risk mapping, engineering geology, hydrogeology, and tectonics.
基金Supported by the National Natural Science Foundation of China(60801050)the Excellent Talent Fund of Beijing(2011)Excellent Young Scholars Research Fund of Beijing Institute ofTechnology(2012)
文摘The finite-element modeling and simulations of the intra-body communication (IBC) were investigated to provide a theoretical basis for biomedical monitoring. A finite-element model for the whole human body was developed to simulate the IBC. The simulation of galvanic coupling IBC and electrostatic coupling IBC were implemented along with different signal transmission paths, and their attenuations were calculated. Our study showed that the position near the signal electrode had higher potential than other positions in the two types of IBC, while the potential generally decreased along the axis of the body parts. Both signal attenuations of the two types IBC increased with increasing signal transmission distance, and the electrostatic coupling IBC had comparatively higher receiving potential than the galvanic coupling IBC. The results indicated that the proposed modeling method could be used for the research of biomedical monitoring based on IBC technology.
文摘To predict the behavior of geogrids embedded in sand under pullout loading conditions, the two dimensional plane-stress finite element model was presented. The interactions between soil and geogrid were simulated as non-linear springs, and the stiffness of the springs was determined from simple tests in the specially designed pullout box. The predicted behavior of the geogrid under pullout load agrees well with the observed data including the load-displacement properties, the displacement distribution along the longitudinal direction and the mobilization of the frictional and bearing resistance. (Edited author abstract) 8 Refs.
基金Project supported by the National Natural Science Foundation of China(No.5140232)the National Science and Technology Major Project(No.2011ZX05038003)the China Postdoctoral Science Foundation(No.2014M561074)
文摘Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressure field are obtained by solving the model equations with the finite-element method. By analyzing bottom hole pressure curves and the fluid flow in the pressure field, seven flow stages can be recognized on the curves. An upscaling method is developed to compare with the dual-porosity model (DPM). The comparisons results show that the DPM overestimates the inter-porosity coefficient ), and the storage factor w. The analysis results show that fracture conductivity plays a leading role in the fluid flow. Matrix permeability influences the beginning time of flow from the matrix to fractures. Fractures density is another important parameter controlling the flow. The fracture linear flow is hidden under the large fracture density. The pressure propagation is slower in the direction of larger fracture density.
基金Supported by the National Basic Research Program (2010CB630902, 2004CB619202) the National Natural Science Foundation of China (31070034, 30800011, 31260396)+1 种基金 the Knowledge Innovation Program of CAS (2AKSCX2-YW-JS401) the Reward Fund for Young Scientists of Shandong Province (2007BS08002) of China
文摘This work presents a study for chemical leaching of sphalerite concentrate under various constant Fe3+ concentrations and redox potential conditions. The effects of Fe3+ concentration and redox potential on chemical leaching of sphalerite were investigated. The shrinking core model was applied to analyze the experimental results. It was found that both the Fe3+ concentration and the redox potential controlled the chemical leaching rate of sphalerite. A new kinetic model was developed, in which the chemical leaching rate of sphalerite was proportional to Fe3+ concentration and Fe3+ /Fe2+ ratio. All the model parameters were evaluated from the experimental data. The model predictions fit well with the experimental observed values.
文摘A simple modified analytic EAM model for bcc Fe and fcc Al was used to calculate the lattice constant and elastic constants of B2 FeAl and DO3 Fe3Al alloys. The formation energies of vacancy and antisite were also calculated. The present calculations are in agreement with the experimental data and the theoretical results obtained by other authors.
基金PTU Jalandhar,Manufacturing Research Lab GNDEC,Ludhiana and DST GOI for financial support
文摘Fused deposition modeling(FDM) is one of the latest rapid prototyping techniques in which parts can be manufactured at a fast pace and are manufactured with a high accuracy. This research work is carried out to study the friction and wear behavior of parts made of newly developed Nylon6-Fe composite material by FDM. This work also involves the comparison of the friction and wear characteristics of the Nylon6-Fe composite with the existing acrylonitrile butadiene styrene(ABS) filament of the FDM machine. This Is carried out on the pin on disk setup by varying the load(5, 10, 15 and 20 N) and speed(200 and 300 r/min). It is concluded that the newly developed composite is highly wear resistant and can be used in industrial applications where wear resistance is of paramount importance. Morphology of the surface in contact with the Nylon6-Fe composite and ABS is also carried out.
文摘A self adjusting model was presented on the basis of the effect of temperature gradient on eutectic growth and a curved solid/liquid interface. Finite differential method was adopted to solve the model. The average lamellar spacing of the Al Al 3Fe eutectic alloy and the content fields ahead of the solidifying interface under different growth rates were calculated. Directional solidification experiments were carried out in order to prove the modification of the modeling. The experimental results are in relatively good agreement with the calculations.
文摘A sub-regular solution model SELFSReM4 used to evaluate activities of the components in a homogeneous region of a quaternary system has been developed in Shanghai Enhanced Lab of Ferrometallurgy. This paper introduces the application of SELFSReM4 in evaluating activities of the components in C-Mn-Fe-Si system without SiC precipitation.
文摘During the solidification process of binary Al Fe alloy under centrifugal casting, the primary phase of Al 3Fe migrates along the radius because of the density difference between the primary phase and the liquid alloy. Therefore the temperature and concentration field are affected significantly by both the fluid flow and the solid phase migration. In order to take this factor into consideration, a two phase flow numerical model has been established in column coordinate to depict the solidification process of Al Fe alloy under centrifugal casting according to the feature that there exists the solid phase migration during the process. Thus the solidification process of Al Fe alloy under centrifugal casting has been described much more pertinently. [
基金Item Sponsored by National Natural Science Foundation of China(50075053)
文摘By introducing aparameter of difference in ferrite formation temperature between binary Fe-C and multicomponent system,and referring to the thermodynamic model for Fe-C binary system,a simplified thermodynamic model for pro-eutectoid ferrite formation in Fe-ΣXiC multicomponent structural steels(Xi=Mn,Si,Mo,Cr,Ni or Ti,etc)was suggested.The comparison of the calculated Ae3 temperatures with the measured data of steels 42 shows that the relative standard deviation and root-mean-square(RMS)error between them are only 0.71% and 8.92 K,respectively.However,the deviations between the same measured data and the values calculated from the superelement model are as high as 1.86% and 23.83 K,respectively.It can be concluded that the simplified thermodynamic model for pro-eutectoid ferrite formation in multicomponent structural steels is acceptable and the calculated Ae3 temperatures are in good agreement with the experimental data.
文摘Coupling with a three dimensional (3D) hydrodynamic model and a suspended solids model, a 3D model for the transport of Fe and Mn in Arha Reservoir, China, was developed. The 3D velocity fields for the flood season are computed to drive the 3D model of Fe and Mn in which the processes of advection, diffusion, redox, sorption, desorption, deposition, and re suspension are included. The model has been calibrated by matching observed fluid, suspended solids, and total concentrations of Fe and Mn in the water column and in the sediment, successively. The model simulated both horizontal and vertical gradients of Fe and Mn in Arha Reservoir. It was found that Fe and especially Mn stratify in accordance with the stratification of DO during summer. The redox cycles across the water sediment interface has a principal role in the rise of Fe and Mn concentrations in the overlying water. It was also found that Fe and Mn loadings from the tributaries have a carryover effect on the water quality through a secondary contamination in the reservoir.