This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear...This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.展开更多
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system...Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.展开更多
This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the F...This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.展开更多
Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finit...Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.展开更多
The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions...The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.展开更多
A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable conditio...A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.展开更多
The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. ...The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. Furthermore, it also developed a monotone iterative technique for obtaining solutions which are obtained as limits of monotone sequences展开更多
Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criter...Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criteria on FTS are presented,where both situations of stabilizing and destabilizing impulses are considered.Furthermore,new impulse-dependent estimation strategies of stochastic settling time(SST)are proposed.展开更多
A class of time-varying delay impulsive reaction-diffusion tree grass-water-nitrogen system driven by Levy jump process is considered.First,we prove the existence and uniqueness of the global positive solution of the ...A class of time-varying delay impulsive reaction-diffusion tree grass-water-nitrogen system driven by Levy jump process is considered.First,we prove the existence and uniqueness of the global positive solution of the model by constructing the Lyapunov function.Secondly,several sufficient conditions for finite-time stability are given by using comparison theorem and mean impulse interval method.Finally,numerical simulations are carried out to verify the effectiveness of the theoretical analysis.展开更多
Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient condi...Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient conditions are pre- sented to ensure the finite-time stability of such neural models with the Caputo fractionM derivatives. Furthermore, results about asymptotical stability of fractional-order neural models are also obtained.展开更多
This paper studies the input-output finite-time stabilization problem for time-varying linear singular sys- tems. The output and the input refer to the controlled output and the disturbance input, respectively. Two cl...This paper studies the input-output finite-time stabilization problem for time-varying linear singular sys- tems. The output and the input refer to the controlled output and the disturbance input, respectively. Two classes of dis- turbance inputs are considered, which belong to L-two and L-infinity. Sufficient conditions are firstly provided which guarantee the input-output finite-time stability. Based on this, state feedback controllers are designed such that the resultant closed-loop systems are input-output finite-time stable. The conditions are presented in terms of differential linear matrix inequalities. Finally, an example is presented to show the validity of the proposed results.展开更多
This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler fu...This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.展开更多
Switching Markov jump linear system(SMJLS),a special hybrid system,has attracted a lot of studies recently.SMJLS is governed by stochastic and deterministic commutations.This paper focuses on the switching strategy wh...Switching Markov jump linear system(SMJLS),a special hybrid system,has attracted a lot of studies recently.SMJLS is governed by stochastic and deterministic commutations.This paper focuses on the switching strategy which stabilizes the SMJLS in a finite time interval in order to further expand the existing results and investigate new aspects of such systems.Several sufficient conditions for finite-time stability of discrete-time SMJLS are provided,and the numerical problems in these sufficient conditions are solved by solving linear matrix inequalities(LMIs).Finally,numerical examples are given to show the feasibility and effectiveness of the results.展开更多
In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a...In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a unique almost periodic positive solution of the considered models.Then,considering that all of the red blood cells in animals survive in a finite-time interval,we study the finite-time stability of the almost periodic positive solution by using some inequality techniques.Our results and methods of this paper are new.Finally,we give numerical examples to show the feasibility of the obtained results.展开更多
In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time st...In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time stability is presented.2)When the system without impulsive effects is globally finite-time stable(GFTS)and the settling time is continuous at the origin,it is proved that it is still GFTS over any class of impulse sequences,if the mixed impulsive jumps satisfy some mild conditions.3)For systems with destabilizing impulses,it is shown that to be finite-time stable,the destabilizing impulses should not occur too frequently,otherwise,the origin of the impulsive system is finite-time instable,which are formulated by average dwell time(ADT)conditions respectively.4)A theorem on finite-time instability is provided for system with stabilizing impulses.For each GFTS theorem of impulsive systems considered in this paper,the upper boundedness of settling time is given,which depends on the initial value and impulsive effects.Some numerical examples are given to illustrate the theoretical analysis.展开更多
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites sta...Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilize...In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.展开更多
基金Project supported by the Hi-Tech Research and Development Program of China (863) (Grant No 2007AA05Z229)National Natural Science Foundation of China (Grant Nos 50877028, 60774069 and 10862001)Science Foundation of Guangdong Province (Grant No 8251064101000014)
文摘This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2007AA041401)Tianjin Natural Science Foundation,China (Grant Nos. 08JCZDJC18600 and 09JCZDJC23900)the University Science and Technology Development Foundation of Tianjin City,China (Grant No. 2006ZD32)
文摘Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.
基金supported by the Mathematical Tianyuan Foundation (No. 10826078)the National Natural Science Foundation of China (No. 60874006)
文摘This paper discusses the problem of finite-time stability with respect to a closed, but not necessarily compact, invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of the Filippov solutions. When the Lyapunov function is Lipschitz continuous and regular, the Lyapunov theorem on finite-time stability with respect to a closed invariant set is presented.
基金supported in part by the National Natural Science Foundation of China(60374015)
文摘Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.
基金Natural Science Foundation of Shanghai,China (No.19ZR1400500)。
文摘The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.
文摘A finite-time stabilization controller for the heating furnace temperature control system is proposed.Based on the extended Lyapunov finite-time stability theory and power integral method,a finite-time stable condition of the heating furnace temperature control system is given.The temperature of the heating furnace is directed by the finite-time stabilization controller to make it stable in finite time.And the quality and quantity of slabs is improved.The simulation example is presented to illustrate the applicability of the developed results.
基金National Natural Science Foundation ofChina( No.1983 10 3 0 and No.10 0 0 10 2 4
文摘The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. Furthermore, it also developed a monotone iterative technique for obtaining solutions which are obtained as limits of monotone sequences
文摘Dear Editor,This letter considers the finite-time stability(FTS)problem of generalized impulsive stochastic nonlinear systems(ISNS).By employing the stochastic Lyapunov and impulsive control approach,some novel criteria on FTS are presented,where both situations of stabilizing and destabilizing impulses are considered.Furthermore,new impulse-dependent estimation strategies of stochastic settling time(SST)are proposed.
文摘A class of time-varying delay impulsive reaction-diffusion tree grass-water-nitrogen system driven by Levy jump process is considered.First,we prove the existence and uniqueness of the global positive solution of the model by constructing the Lyapunov function.Secondly,several sufficient conditions for finite-time stability are given by using comparison theorem and mean impulse interval method.Finally,numerical simulations are carried out to verify the effectiveness of the theoretical analysis.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20093401120001the Natural Science Foundation of Anhui Province under Grant No.11040606M12+1 种基金the Natural Science Foundation of Anhui Education Bureau under Grant No.KJ2010A035the 211 Project of Anhui University under Grant No.KJJQ1102
文摘Finite-time stability of a class of fractional-order neural networks is investigated in this paper. By Laplace transform, the generalized Gronwa11 inequality and estimates of Mittag-Leffier functions, sufficient conditions are pre- sented to ensure the finite-time stability of such neural models with the Caputo fractionM derivatives. Furthermore, results about asymptotical stability of fractional-order neural models are also obtained.
基金supported by the National Natural Science Foundation of China(Nos.60974137,61174141,61004005,61074070)the Research Awards Fund for Outstanding Young and Middle-Aged Scientists of Shandong Province(Nos.BS2011SF009,BS2011DX019)the Independent Innovation Foundation of Shandong University(Nos.IIFSDU2009TS085,2010TS007)
文摘This paper studies the input-output finite-time stabilization problem for time-varying linear singular sys- tems. The output and the input refer to the controlled output and the disturbance input, respectively. Two classes of dis- turbance inputs are considered, which belong to L-two and L-infinity. Sufficient conditions are firstly provided which guarantee the input-output finite-time stability. Based on this, state feedback controllers are designed such that the resultant closed-loop systems are input-output finite-time stable. The conditions are presented in terms of differential linear matrix inequalities. Finally, an example is presented to show the validity of the proposed results.
基金Supported by National Natural Science Foundation of China under Grant Nos.61673008,11261010,11101126Project of High–Level Innovative Talents of Guizhou Province([2016]5651)+2 种基金Natural Science and Technology Foundation of Guizhou Province(J[2015]2025 and J[2015]2026)125 Special Major Science and Technology of Department of Education of Guizhou Province([2012]011)Natural Science Foundation of the Education Department of Guizhou Province(KY[2015]482)
文摘This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.
基金the National Natural Science Foundation of China(No.61573237)the“111 Project”(No.D18003)the Program of China Scholarship Council(No.201906895021)。
文摘Switching Markov jump linear system(SMJLS),a special hybrid system,has attracted a lot of studies recently.SMJLS is governed by stochastic and deterministic commutations.This paper focuses on the switching strategy which stabilizes the SMJLS in a finite time interval in order to further expand the existing results and investigate new aspects of such systems.Several sufficient conditions for finite-time stability of discrete-time SMJLS are provided,and the numerical problems in these sufficient conditions are solved by solving linear matrix inequalities(LMIs).Finally,numerical examples are given to show the feasibility and effectiveness of the results.
基金the National Natural Sciences Foundation of People's Republic of China under Grants Nos.11861072 and 11361072the Applied Basic Research Programs of Science and Technology Department of Yunnan Province under Grant No.2019FBO03.
文摘In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a unique almost periodic positive solution of the considered models.Then,considering that all of the red blood cells in animals survive in a finite-time interval,we study the finite-time stability of the almost periodic positive solution by using some inequality techniques.Our results and methods of this paper are new.Finally,we give numerical examples to show the feasibility of the obtained results.
基金National Natural Science Foundation of China(No.61807017)the National Natural Science Foundation of China(Nos.12171122,11771128)+3 种基金Shenzhen Science and Technology Program(Grant No.RCJC20210609103755110)Fundamental Research Project of Shenzhen(No.JCYJ20190806143201649)Project(HIT.NSRIF.2020056)Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of TechnologyResearch start-up fund Foundation in Harbin Institute of Technology(No.20190019)。
文摘In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time stability is presented.2)When the system without impulsive effects is globally finite-time stable(GFTS)and the settling time is continuous at the origin,it is proved that it is still GFTS over any class of impulse sequences,if the mixed impulsive jumps satisfy some mild conditions.3)For systems with destabilizing impulses,it is shown that to be finite-time stable,the destabilizing impulses should not occur too frequently,otherwise,the origin of the impulsive system is finite-time instable,which are formulated by average dwell time(ADT)conditions respectively.4)A theorem on finite-time instability is provided for system with stabilizing impulses.For each GFTS theorem of impulsive systems considered in this paper,the upper boundedness of settling time is given,which depends on the initial value and impulsive effects.Some numerical examples are given to illustrate the theoretical analysis.
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
基金supported by the grants from the National Key Research and Development Program of China 2023YFC2505900support from State Key Laboratory of Photovoltaic Science and Technology 202401030303.
文摘Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
基金supported by National Natural Science Foundation of China (No.60504007)the PhD Programs Foundation of Ministry of Educationof China (No.20070286040)the Scientific Research Foundation of Graduate School of Southeast University
文摘In this paper, using finite-time control method, we consider the disturbance analysis of a second-order system with unknown but bounded disturbance. We show that the states of the second-order system will be stabilized to a region containing the origin. The radius of this region is determined by the control parameters and can be rendered as small as desired. The rigorous stability analysis is also given. Compared with the conventional PD control law, the finite-time control law yields a better disturbance rejection performance. Numerical simulation results show the effectiveness of the method.