This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain distu...This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain disturbance. An appropriate controller is designed such that this type of network can be synchronized within a finite time. By constructing a proper Lyapunov function and using the finite-time stability theory, the sufficient conditions for the network to achieve finite-time synchronization are given and the finite time is estimated. Finally, the conclusions obtained are extended to the case of homogeneous complex networks with time-varying delays and uncertain disturbance.展开更多
This paper studies the finite-time synchronization of fractional-order chaotic systems with different structures under parameter disturbance and external disturbance. We put forward a fractional-order controller that ...This paper studies the finite-time synchronization of fractional-order chaotic systems with different structures under parameter disturbance and external disturbance. We put forward a fractional-order controller that can achieve the finite-time synchronization of any-order fractional-order chaotic systems under stochastic disturbances. This controller has good robustness and anti-interference performance. With the concept of the finite-time stability theory given, some judgment criterions for the synchronization of fractional-order chaotic systems are proved. This method can not only make the error systems have a faster convergence rate but also can be implemented in engineering easily. The numerical simulations of two specific examples demonstrate the effectiveness of the method. At the same time, the synchronised time of finite-time synchronization is shorter and faster than the complete synchronization and the time can be adjusted according to the parameters in the controller.展开更多
The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapuno...The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapunov stability theory,quantized controllers are designed to guarantee that FMCNs can achieve synchronization in a limited time with and without coupling delay,respectively.Then,appropriate parameter update laws are obtained to identify the uncertain parameters in FMCNs.Finally,numerical simulation examples are given to validate the correctness of the theoretical results.展开更多
The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The fin...The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The finite-time synchronization of the proposed complex transportation networks model is studied systematically.On the basis of the theory of stability,the technique of adaptive control,aperiodically intermittent control and finite-time control,the aperiodically intermittent adaptive finite-time synchronization controller is designed.The controller designed in this paper is beneficial for understanding the synchronization in multi-weighted complex transportation networks with multiple delays.In addition,the conditions for the existence of finite time synchronization have been discussed in detail.And the specific value of the settling finite time for synchronization is obtained.Moreover,the outer coupling configuration matrices are not required to be irreducible or symmetric.Finally,simulation results of the finite-time synchronization problem are given to illustrate the correctness of the results obtained.展开更多
This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and extern...This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.展开更多
This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization ...This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization protocols are presented based on continuous controller strategies which can efficaciously eliminate chattering phenomenon existing in some previous results. Several sufficient conditions ensuring fixed-time and finite-time synchronization are derived by employing Lyapunov stability theory, linear matrix inequality (LMI) and adaptive technique. Furthermore, aimed at the model of this article, we study the problem of adaptive coupling strength in fixed-time synchronization which is rarely involved in previous results. Finally, several numerical examples are given to illustrate the effectiveness of our results.展开更多
This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzz...This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global ...This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.展开更多
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different....Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different.Due to the continuous and periodical properties of electromagnetic fields in the cell during its operation,electronic components involving two capacitors and a memristor are effective in mimicking these physical features.In this paper,a neural circuit is reconstructed by two capacitors connected by a memristor with periodical mem-conductance.It is found that the memristive neural circuit can present abundant firing patterns without stimulus.The Hamilton energy function is deduced using the Helmholtz theorem.Further,a neuronal network consisting of memristive neurons is proposed by introducing energy coupling.The controllability and flexibility of parameters give the model the ability to describe the dynamics and synchronization behavior of the system.展开更多
Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtua...Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing ...The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor,and a binaural auditory system is established.Considering the non-singleness of external sound sources,the high–low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system.It is found that the angular frequency of the high–low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous.When they are in synchronization at a specific angular frequency,the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization.In addition,the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high–low frequency signal rather than the coupling strength.The asynchronous dynamic behavior and variations in firing modes will harm the auditory system.These findings could help determine the causes of hearing loss and devise functional assistive devices for patients.展开更多
We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially p...We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially prepared in a thermal state or a state with coherence,are correlated through a unitary transformation and afterward interact locally with the two quantum subsystems.We study the quantum effect of reservoir on synchronous dynamics of system.By preparing different reservoir initial states or manipulating the reservoir particles coupling and the temperature gradient,we find that quantum entanglement of reservoir is the key to control quantum synchronization of system qubits.展开更多
As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digi...As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency referenc...Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer...Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.展开更多
文摘This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain disturbance. An appropriate controller is designed such that this type of network can be synchronized within a finite time. By constructing a proper Lyapunov function and using the finite-time stability theory, the sufficient conditions for the network to achieve finite-time synchronization are given and the finite time is estimated. Finally, the conclusions obtained are extended to the case of homogeneous complex networks with time-varying delays and uncertain disturbance.
文摘This paper studies the finite-time synchronization of fractional-order chaotic systems with different structures under parameter disturbance and external disturbance. We put forward a fractional-order controller that can achieve the finite-time synchronization of any-order fractional-order chaotic systems under stochastic disturbances. This controller has good robustness and anti-interference performance. With the concept of the finite-time stability theory given, some judgment criterions for the synchronization of fractional-order chaotic systems are proved. This method can not only make the error systems have a faster convergence rate but also can be implemented in engineering easily. The numerical simulations of two specific examples demonstrate the effectiveness of the method. At the same time, the synchronised time of finite-time synchronization is shorter and faster than the complete synchronization and the time can be adjusted according to the parameters in the controller.
文摘The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapunov stability theory,quantized controllers are designed to guarantee that FMCNs can achieve synchronization in a limited time with and without coupling delay,respectively.Then,appropriate parameter update laws are obtained to identify the uncertain parameters in FMCNs.Finally,numerical simulation examples are given to validate the correctness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61803275)Liaoning Provincial Department of Education Scientific Research Fund Project,China(Grant Nos.lnjc202018 and lnzd202007)+1 种基金Liaoning BaiQianWan Talents Program(Grant No.2017076)Liaoning Province Doctor Starting Foundation(Grant No.20170520283).
文摘The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The finite-time synchronization of the proposed complex transportation networks model is studied systematically.On the basis of the theory of stability,the technique of adaptive control,aperiodically intermittent control and finite-time control,the aperiodically intermittent adaptive finite-time synchronization controller is designed.The controller designed in this paper is beneficial for understanding the synchronization in multi-weighted complex transportation networks with multiple delays.In addition,the conditions for the existence of finite time synchronization have been discussed in detail.And the specific value of the settling finite time for synchronization is obtained.Moreover,the outer coupling configuration matrices are not required to be irreducible or symmetric.Finally,simulation results of the finite-time synchronization problem are given to illustrate the correctness of the results obtained.
文摘This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.
文摘This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization protocols are presented based on continuous controller strategies which can efficaciously eliminate chattering phenomenon existing in some previous results. Several sufficient conditions ensuring fixed-time and finite-time synchronization are derived by employing Lyapunov stability theory, linear matrix inequality (LMI) and adaptive technique. Furthermore, aimed at the model of this article, we study the problem of adaptive coupling strength in fixed-time synchronization which is rarely involved in previous results. Finally, several numerical examples are given to illustrate the effectiveness of our results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62263005)Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA238029)+2 种基金Laboratory of AI and Information Processing (Hechi University), Education Department of Guangxi Zhuang Autonomous Region (Grant No. 2022GXZDSY004)Innovation Project of Guangxi Graduate Education (Grant No. YCSW2023298)Innovation Project of GUET Graduate Education (Grant Nos. 2022YCXS149 and 2022YCXS155)。
文摘This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金supported by the National Natural Science Foundation of China(62073019)。
文摘This paper investigates the problem of global/semi-global finite-time consensus for integrator-type multi-agent sys-tems.New hyperbolic tangent function-based protocols are pro-posed to achieve global and semi-global finite-time consensus for both single-integrator and double-integrator multi-agent systems with leaderless undirected and leader-following directed commu-nication topologies.These new protocols not only provide an explicit upper-bound estimate for the settling time,but also have a user-prescribed bounded control level.In addition,compared to some existing results based on the saturation function,the pro-posed approach considerably simplifies the protocol design and the stability analysis.Illustrative examples and an application demonstrate the effectiveness of the proposed protocols.
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.
基金funded by the National Natural Science Foundation of China(Grant No.12302070)the Ningxia Science and Technology Leading Talent Training Program(Grant No.2022GKLRLX04)。
文摘Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different.Due to the continuous and periodical properties of electromagnetic fields in the cell during its operation,electronic components involving two capacitors and a memristor are effective in mimicking these physical features.In this paper,a neural circuit is reconstructed by two capacitors connected by a memristor with periodical mem-conductance.It is found that the memristive neural circuit can present abundant firing patterns without stimulus.The Hamilton energy function is deduced using the Helmholtz theorem.Further,a neuronal network consisting of memristive neurons is proposed by introducing energy coupling.The controllability and flexibility of parameters give the model the ability to describe the dynamics and synchronization behavior of the system.
文摘Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.11605014)。
文摘The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor,and a binaural auditory system is established.Considering the non-singleness of external sound sources,the high–low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system.It is found that the angular frequency of the high–low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous.When they are in synchronization at a specific angular frequency,the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization.In addition,the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high–low frequency signal rather than the coupling strength.The asynchronous dynamic behavior and variations in firing modes will harm the auditory system.These findings could help determine the causes of hearing loss and devise functional assistive devices for patients.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12147174 and 61835013)the National Key Research and Development Program of China(Grant Nos.2021YFA1400900,2021YFA0718300,and 2021YFA1400243).
文摘We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially prepared in a thermal state or a state with coherence,are correlated through a unitary transformation and afterward interact locally with the two quantum subsystems.We study the quantum effect of reservoir on synchronous dynamics of system.By preparing different reservoir initial states or manipulating the reservoir particles coupling and the temperature gradient,we find that quantum entanglement of reservoir is the key to control quantum synchronization of system qubits.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62131005, 62071096in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006+1 种基金in part by the National NSFC under Grant U19B2014in part by the Natural Science Foundation of Sichuan under Grant 2022NSFSC0495
文摘As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1402100)。
文摘Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金Supported by Natural Science Foundation of Shaanxi Province of China(Grant No.2021JM010)Suzhou Municipal Natural Science Foundation of China(Grant Nos.SYG202018,SYG202134).
文摘Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector.