We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by sol...We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.展开更多
We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conse...We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.展开更多
Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow para...Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.展开更多
This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluate...This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluated across domain boundaries over time intervals.The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting.It implies that a weak solution indeed satisfies the balance law.In fact,it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.It should be emphasized that the weak solutions considered here need not be entropy solutions.Furthermore,the assumption imposed on the flux f(u)is quite minimal-just that it is locally bounded.展开更多
We analyze mimetic properties of a conservative finite-volume (FV) scheme on polygonal meshes used for modeling solute transport on a surface with variable elevation. Polygonal meshes not only provide enormous mesh ge...We analyze mimetic properties of a conservative finite-volume (FV) scheme on polygonal meshes used for modeling solute transport on a surface with variable elevation. Polygonal meshes not only provide enormous mesh generation flexibility, but also tend to improve stability properties of numerical schemes and reduce bias towards any particular mesh direction. The mathematical model is given by a system of weakly coupled shallow water and linear transport equations. The equations are discretized using different explicit cell-centered FV schemes for flow and transport subsystems with different time steps. The discrete shallow water scheme is well balanced and preserves the positivity of the water depth. We provide a rigorous estimate of a stable time step for the shallow water and transport scheme and prove a bounds-preserving property of the solute concentration. The scheme is second-order accurate over fully wet regions and first-order accurate over partially wet or dry regions. Theoretical results are verified with numerical experiments on rectangular, triangular, and polygonal meshes.展开更多
基金The work of A.Kurganov was supported in part by the National Natural Science Foundation of China grant 11771201by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001).
文摘We introduce adaptive moving mesh central-upwind schemes for one-and two-dimensional hyperbolic systems of conservation and balance laws.The proposed methods consist of three steps.First,the solution is evolved by solving the studied system by the second-order semi-discrete central-upwind scheme on either the one-dimensional nonuniform grid or the two-dimensional structured quadrilateral mesh.When the evolution step is complete,the grid points are redistributed according to the moving mesh differential equation.Finally,the evolved solution is projected onto the new mesh in a conservative manner.The resulting adaptive moving mesh methods are applied to the one-and two-dimensional Euler equations of gas dynamics and granular hydrodynamics systems.Our numerical results demonstrate that in both cases,the adaptive moving mesh central-upwind schemes outperform their uniform mesh counterparts.
基金support by Fondazione Cariplo and Fondazione CDP(Italy)under the project No.2022-1895.
文摘We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics(MHD)over simplicial grids.The cell-centered finite-volume(FV)method employed to discretize the conservation laws of volume,momentum,and total energy is rigorously the same as the one developed to simulate hyperelasticity equations.By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration.This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization.The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node.We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping.In this framework,the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula.Therefore,we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field.Finally,the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell.The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node.This balance corresponds to a vectorial system satisfied by the nodal velocity.It always admits a unique solution which provides the nodal velocity.The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases.Finally,it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.
基金the Shahrood University of Technology for financial support of this study
文摘Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.
基金the Institute of Applied Physics and Computational Mathematics,Beijing,for the hospitality and support.The second author is supported by the NSFC(Nos.11771054,12072042,91852207)the Sino-German Research Group Project(No.GZ1465)the National Key Project GJXM92579.
文摘This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws.The basic idea is that the“meaningful objects”are the fluxes,evaluated across domain boundaries over time intervals.The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting.It implies that a weak solution indeed satisfies the balance law.In fact,it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.It should be emphasized that the weak solutions considered here need not be entropy solutions.Furthermore,the assumption imposed on the flux f(u)is quite minimal-just that it is locally bounded.
基金This work was carried out under the auspices of the National Nuclear Security Administration of the U.S.Department of Energy at Los Alamos National Laboratory under Contract No.DE-AC52-06NA25396The Los Alamos unlimited release number is LA-UR-22-30864.
文摘We analyze mimetic properties of a conservative finite-volume (FV) scheme on polygonal meshes used for modeling solute transport on a surface with variable elevation. Polygonal meshes not only provide enormous mesh generation flexibility, but also tend to improve stability properties of numerical schemes and reduce bias towards any particular mesh direction. The mathematical model is given by a system of weakly coupled shallow water and linear transport equations. The equations are discretized using different explicit cell-centered FV schemes for flow and transport subsystems with different time steps. The discrete shallow water scheme is well balanced and preserves the positivity of the water depth. We provide a rigorous estimate of a stable time step for the shallow water and transport scheme and prove a bounds-preserving property of the solute concentration. The scheme is second-order accurate over fully wet regions and first-order accurate over partially wet or dry regions. Theoretical results are verified with numerical experiments on rectangular, triangular, and polygonal meshes.