This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to...This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus.展开更多
In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space...In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.展开更多
Visual fire detection technologies can detect fire and alarm warnings earlier than conventional fire detectors. This study proposes an effective visual fire detection method that combines the statistical fire color mo...Visual fire detection technologies can detect fire and alarm warnings earlier than conventional fire detectors. This study proposes an effective visual fire detection method that combines the statistical fire color model and sequential pattern mining technology to detect fire in an image. Furthermore, the proposed method also supports real-time fire detection by integrating adaptive background subtraction technologies. Experimental results show that the proposed method can effectively detect fire in test images and videos. The detection accuracy of the proposed hybrid method is better than that of Celik's method.展开更多
A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (...A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module.展开更多
The health and productivity of mining operations are negatively impacted by coal mine fires, making them dangerous. It happened everywhere, in both working and abandoned coal mines. This study seeks to review and prov...The health and productivity of mining operations are negatively impacted by coal mine fires, making them dangerous. It happened everywhere, in both working and abandoned coal mines. This study seeks to review and provide technical analytics of potential mine fires and fire detection in a Dual-Cab suppression system. Analysis was done on potential mine fires like spontaneous combustion, flammable gas explosions, and cab vehicle fires. Additionally, a review of the NIOSH experiment was conducted to assess the performance of smoke and flame detectors in a dual-cab suppression system. This study guides both open-pit and underground mining operations. Additionally, a few ideas and suggestions are presented to assist with on-the-job safety analysis, ensuing creative alterations, and technology advancement for the mining industry’s overall safety.展开更多
The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the ar...The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods.展开更多
Healthy forest is the vital resource to regulate climate at a regional and global level. Forest fire has been regarded as one of the major reasons for the loss of forest and degradation of the environment. Global warm...Healthy forest is the vital resource to regulate climate at a regional and global level. Forest fire has been regarded as one of the major reasons for the loss of forest and degradation of the environment. Global warming is increasing its intensity at an alarming rate. Real-time fire detection is a necessity to avoid large scale losses. Remote sensing is a quick and cheap technique for detecting and monitoring forest fires on a large scale. Advance Very Radiometer Resolution (AVHRR) has been used already for a long period for fire detection. The use of Moderate Resolution Imaging Radio Spectrometer (MODIS) for fire detection has recently preceded AVHRR and a large number of fire products are being developed. MODIS based forest fire detection and monitoring system can solve the problem of real-time forest fire monitoring. The system facilitates data acquisition, processing, reporting and feedback on the fire location information in an automated manner. It provides location information at 1 × 1 kilometer resolution on the active fires which are present during the satellite overpass twice a day. The users are provided with the information on SMS alert with fire location details, email notification, and online visualization of fire locations on website automatically. The whole processes are automated and provide better accuracy for fire detection.展开更多
A neural network fire detection method was developed using detection information for temperature smoke density, and CO concentration to determine the probability of three representative fire conditions. The method ove...A neural network fire detection method was developed using detection information for temperature smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.展开更多
发动机火警系统属于威胁飞行安全的核心风险之一。本文针对一起PW306C发动机清洗后出现ENG FIRE DETECT FAIL R警告的故障,还原故障现象,结合发动机火警原理图阐述PW306C发动机火警系统工作原理,为故障的深入分析提供理论基础;在故障分...发动机火警系统属于威胁飞行安全的核心风险之一。本文针对一起PW306C发动机清洗后出现ENG FIRE DETECT FAIL R警告的故障,还原故障现象,结合发动机火警原理图阐述PW306C发动机火警系统工作原理,为故障的深入分析提供理论基础;在故障分析环节,排除法锁定故障部件,通过实验还原证实了故障原因,确保飞机放行不留任何隐患。展开更多
To improve the performance of the forest fire smoke detection model and achieve a better balance between detection accuracy and speed, an improved YOLOv4 detection model (MoAm-YOLOv4) that combines a lightweight netwo...To improve the performance of the forest fire smoke detection model and achieve a better balance between detection accuracy and speed, an improved YOLOv4 detection model (MoAm-YOLOv4) that combines a lightweight network and attention mechanism was proposed. Based on the YOLOv4 algorithm, the backbone network CSPDarknet53 was replaced with a lightweight network MobilenetV1 to reduce the model’s size. An attention mechanism was added to the three channels before the output to increase its ability to extract forest fire smoke effectively. The algorithm used the K-means clustering algorithm to cluster the smoke dataset, and obtained candidate frames that were close to the smoke images;the dataset was expanded to 2000 images by the random flip expansion method to avoid overfitting in training. The experimental results show that the improved YOLOv4 algorithm has excellent detection effect. Its mAP can reach 93.45%, precision can get 93.28%, and the model size is only 45.58 MB. Compared with YOLOv4 algorithm, MoAm-YOLOv4 improves the accuracy by 1.3% and reduces the model size by 80% while sacrificing only 0.27% mAP, showing reasonable practicability.展开更多
Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nige...Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nigerian cities has been on increase in recent times. The major problem faced by fire fighters in Nigerian urban centres is that there are no mechanisms to detect fire outbreaks early enough to save lives and properties. They often rely on calls made by neighbours or occupants when an outbreak occurs and this accounts for the delay in fighting fire outbreaks. This work uses Artificial Neural Networks (ANN) with backpropagation method to detect the occurrence of urban fires. The method uses smoke density, room temperature and cooking gas concentration as inputs. The work was implemented using Java programming language and results showed that it detected the occurrence of urban fires with reasonable accuracy. The work is recommended for use to minimize the effect of urban fire outbreak.展开更多
Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This st...Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This study has investigated the application and method development of vapor phase mid-Infrared (mid-IR) spectroscopy using a field portable quantum cascade laser (QCL) based system for the detection and identification of accelerant residues such as gasoline, diesel, and ethanol in fire debris. A searchable spectral library of various ignitable fluids and fuel components measured in the vapor phase was constructed that allowed for real-time identification of accelerants present in samples using software developed in-house. Measurement of vapors collected from paper material that had been doused with an accelerant followed by controlled burning and then extinguished with water showed that positive identification could be achieved for gasoline, diesel, and ethanol. This vapor phase mid-IR QCL method is rapid, easy to use, and has the sensitivity and discrimination capability that make it well suited for non-destructive crime scene sample analysis. Sampling and measurement can be performed in minutes with this 7.5 kg instrument. This vibrational spectroscopic method required no time-consuming sample pretreatment or complicated solvent extraction procedure. The results of this initial feasibility study demonstrate that this portable fire debris analyzer would greatly benefit arson investigators performing analysis on-site.展开更多
In compartment fires (houses, buildings, underground, warehouse, etc.), smokes are a major dan- ger during firemen intervention. Most of the time, they are at high temperature (>800?C) and they flow everywhere thro...In compartment fires (houses, buildings, underground, warehouse, etc.), smokes are a major dan- ger during firemen intervention. Most of the time, they are at high temperature (>800?C) and they flow everywhere through many kinds of ducts, which leads to the propagation of the combustion by the creation other fires in places which may be far away from the initial fire. In this paper, we present a new approach of the problem, which allows to better follow the fire behavior and especially to detect the dangers that may appear and endanger firefighters. This approach consists in a mathematical analysis based on the comparison of moving averages centered in the past, calculated on the temperature recordings of the smokes. As a consequence, this method may allow to improve decision support in real time and therefore to improve the security and the efficiency of firefighters in their operations against that kind of fires.展开更多
文摘This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus.
基金supported by National Natural Science Foundation of China(41471387,41631072)
文摘In this paper, a video fire detection method is proposed, which demonstrated good performance in indoor environment. Three main novel ideas have been introduced. Firstly, a flame color model in RGB and HIS color space is used to extract pre-detected regions instead of traditional motion differential method, as it’s more suitable for fire detection in indoor environment. Secondly, according to the flicker characteristic of the flame, similarity and two main values of centroid motion are proposed. At the same time, a simple but effective method for tracking the same regions in consecutive frames is established. Thirdly,a multi-expert system consisting of color component dispersion,similarity and centroid motion is established to identify flames.The proposed method has been tested on a very large dataset of fire videos acquired both in real indoor environment tests and from the Internet. The experimental results show that the proposed approach achieved a balance between the false positive rate and the false negative rate, and demonstrated a better performance in terms of overall accuracy and F standard with respect to other similar fire detection methods in indoor environment.
基金supported by National Science Council under Grant No. NSC98-2221-E-218-046
文摘Visual fire detection technologies can detect fire and alarm warnings earlier than conventional fire detectors. This study proposes an effective visual fire detection method that combines the statistical fire color model and sequential pattern mining technology to detect fire in an image. Furthermore, the proposed method also supports real-time fire detection by integrating adaptive background subtraction technologies. Experimental results show that the proposed method can effectively detect fire in test images and videos. The detection accuracy of the proposed hybrid method is better than that of Celik's method.
文摘A forest fire is a severe threat to forest resources and human life, In this paper, we propose a forest-fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi- criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi-criteria detection is implemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module.
文摘The health and productivity of mining operations are negatively impacted by coal mine fires, making them dangerous. It happened everywhere, in both working and abandoned coal mines. This study seeks to review and provide technical analytics of potential mine fires and fire detection in a Dual-Cab suppression system. Analysis was done on potential mine fires like spontaneous combustion, flammable gas explosions, and cab vehicle fires. Additionally, a review of the NIOSH experiment was conducted to assess the performance of smoke and flame detectors in a dual-cab suppression system. This study guides both open-pit and underground mining operations. Additionally, a few ideas and suggestions are presented to assist with on-the-job safety analysis, ensuing creative alterations, and technology advancement for the mining industry’s overall safety.
基金National Natural Science Foundation of China(No.61573095)Natural Science Foundation of Shanghai,China(No.6ZR1446700)
文摘The devastating effects of wildland fire are an unsolved problem,resulting in human losses and the destruction of natural and economic resources.Convolutional neural network(CNN)is shown to perform very well in the area of object classification.This network has the ability to perform feature extraction and classification within the same architecture.In this paper,we propose a CNN for identifying fire in videos.A deep domain based method for video fire detection is proposed to extract a powerful feature representation of fire.Testing on real video sequences,the proposed approach achieves better classification performance as some of relevant conventional video based fire detection methods and indicates that using CNN to detect fire in videos is efficient.To balance the efficiency and accuracy,the model is fine-tuned considering the nature of the target problem and fire data.Experimental results on benchmark fire datasets reveal the effectiveness of the proposed framework and validate its suitability for fire detection in closed-circuit television surveillance systems compared to state-of-the-art methods.
文摘Healthy forest is the vital resource to regulate climate at a regional and global level. Forest fire has been regarded as one of the major reasons for the loss of forest and degradation of the environment. Global warming is increasing its intensity at an alarming rate. Real-time fire detection is a necessity to avoid large scale losses. Remote sensing is a quick and cheap technique for detecting and monitoring forest fires on a large scale. Advance Very Radiometer Resolution (AVHRR) has been used already for a long period for fire detection. The use of Moderate Resolution Imaging Radio Spectrometer (MODIS) for fire detection has recently preceded AVHRR and a large number of fire products are being developed. MODIS based forest fire detection and monitoring system can solve the problem of real-time forest fire monitoring. The system facilitates data acquisition, processing, reporting and feedback on the fire location information in an automated manner. It provides location information at 1 × 1 kilometer resolution on the active fires which are present during the satellite overpass twice a day. The users are provided with the information on SMS alert with fire location details, email notification, and online visualization of fire locations on website automatically. The whole processes are automated and provide better accuracy for fire detection.
基金Supported by the Key Technologies Research and Development Program of the Eleventh Five-Year Plan of China(No. 2007BAK22B04)2008 Independent Task(No. SKLCRSM08B12)
文摘A neural network fire detection method was developed using detection information for temperature smoke density, and CO concentration to determine the probability of three representative fire conditions. The method overcomes the shortcomings of domestic fire alarm systems using single sensor information. Test results show that the identification error rates for fires, smoldering fires, and no fire are less than 5%, which greatly reduces leak-check rates and false alarms. This neural network fire alarm system can fuse a variety of sensor data and improve the ability of systems to adapt in the environment and accurately predict fires, which has great significance for life and property safety.
文摘发动机火警系统属于威胁飞行安全的核心风险之一。本文针对一起PW306C发动机清洗后出现ENG FIRE DETECT FAIL R警告的故障,还原故障现象,结合发动机火警原理图阐述PW306C发动机火警系统工作原理,为故障的深入分析提供理论基础;在故障分析环节,排除法锁定故障部件,通过实验还原证实了故障原因,确保飞机放行不留任何隐患。
文摘To improve the performance of the forest fire smoke detection model and achieve a better balance between detection accuracy and speed, an improved YOLOv4 detection model (MoAm-YOLOv4) that combines a lightweight network and attention mechanism was proposed. Based on the YOLOv4 algorithm, the backbone network CSPDarknet53 was replaced with a lightweight network MobilenetV1 to reduce the model’s size. An attention mechanism was added to the three channels before the output to increase its ability to extract forest fire smoke effectively. The algorithm used the K-means clustering algorithm to cluster the smoke dataset, and obtained candidate frames that were close to the smoke images;the dataset was expanded to 2000 images by the random flip expansion method to avoid overfitting in training. The experimental results show that the improved YOLOv4 algorithm has excellent detection effect. Its mAP can reach 93.45%, precision can get 93.28%, and the model size is only 45.58 MB. Compared with YOLOv4 algorithm, MoAm-YOLOv4 improves the accuracy by 1.3% and reduces the model size by 80% while sacrificing only 0.27% mAP, showing reasonable practicability.
文摘Incessant fire-outbreak in urban settlements has remained intractable especially in developing countries like Nigeria. This is often characterized by grave socio-economic aftermath effects. Urban fire outbreak in Nigerian cities has been on increase in recent times. The major problem faced by fire fighters in Nigerian urban centres is that there are no mechanisms to detect fire outbreaks early enough to save lives and properties. They often rely on calls made by neighbours or occupants when an outbreak occurs and this accounts for the delay in fighting fire outbreaks. This work uses Artificial Neural Networks (ANN) with backpropagation method to detect the occurrence of urban fires. The method uses smoke density, room temperature and cooking gas concentration as inputs. The work was implemented using Java programming language and results showed that it detected the occurrence of urban fires with reasonable accuracy. The work is recommended for use to minimize the effect of urban fire outbreak.
文摘Arson presents a challenging crime scene for fire investigators worldwide. Key to the investigation of suspected arson cases is the analysis of fire debris for the presence of accelerants or ignitable liquids. This study has investigated the application and method development of vapor phase mid-Infrared (mid-IR) spectroscopy using a field portable quantum cascade laser (QCL) based system for the detection and identification of accelerant residues such as gasoline, diesel, and ethanol in fire debris. A searchable spectral library of various ignitable fluids and fuel components measured in the vapor phase was constructed that allowed for real-time identification of accelerants present in samples using software developed in-house. Measurement of vapors collected from paper material that had been doused with an accelerant followed by controlled burning and then extinguished with water showed that positive identification could be achieved for gasoline, diesel, and ethanol. This vapor phase mid-IR QCL method is rapid, easy to use, and has the sensitivity and discrimination capability that make it well suited for non-destructive crime scene sample analysis. Sampling and measurement can be performed in minutes with this 7.5 kg instrument. This vibrational spectroscopic method required no time-consuming sample pretreatment or complicated solvent extraction procedure. The results of this initial feasibility study demonstrate that this portable fire debris analyzer would greatly benefit arson investigators performing analysis on-site.
文摘In compartment fires (houses, buildings, underground, warehouse, etc.), smokes are a major dan- ger during firemen intervention. Most of the time, they are at high temperature (>800?C) and they flow everywhere through many kinds of ducts, which leads to the propagation of the combustion by the creation other fires in places which may be far away from the initial fire. In this paper, we present a new approach of the problem, which allows to better follow the fire behavior and especially to detect the dangers that may appear and endanger firefighters. This approach consists in a mathematical analysis based on the comparison of moving averages centered in the past, calculated on the temperature recordings of the smokes. As a consequence, this method may allow to improve decision support in real time and therefore to improve the security and the efficiency of firefighters in their operations against that kind of fires.