Fire incidents in commercial vehicles pose significant risks to passengers, drivers, and cargo. Traditional fire extinguishing systems, while effective, may have limitations in terms of response time, coverage, and hu...Fire incidents in commercial vehicles pose significant risks to passengers, drivers, and cargo. Traditional fire extinguishing systems, while effective, may have limitations in terms of response time, coverage, and human intervention [1]. This study investigates the efficacy of a novel fire suppression technology—the Exploding Fire Extinguishing Ball (EFEB) —as an alternative and complementary fire safety solution for commercial vehicles. The research employs a multidisciplinary approach, encompassing engineering, materials science, fire safety, and human factors analysis. A systematic literature review establishes a comprehensive understanding of existing fire suppression technologies, including EFEBs. Subsequently, this study analyzes the unique features of EFEBs, such as automatic activation, as well as manual activation upon exposure to fire, and their potential to provide rapid, localized, and autonomous fire suppression. The study presents original experimental investigations to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. Experiments include controlled fires in confined spaces and dynamic simulations to emulate real-world fire incidents. Data on activation times, extinguishing capability, and coverage area are collected and analyzed to compare the efficacy of EFEBs with traditional fire extinguishing methods. Furthermore, this research shows the practical aspects of implementing EFEBs in commercial vehicles. A feasibility study examines the integration challenges, cost-benefit analysis, and potential regulatory implications. The study also addresses the impact of EFEBs on vehicle weight, stability, and overall safety. Human factors and user acceptance are crucial elements in adopting new safety technologies. Therefore, this research utilizes an experimental design to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. This dissertation presents original controlled experiments to emulate real-world fire incidents, including controlled fires in confined spaces and dynamic simulations. The experimental approach ensures rigorous evaluation and objective insights into EFEBs’ potential as an autonomous fire suppression system for commercial vehicles. This includes the perspectives of drivers, passengers, fleet operators, insurance agencies, and regulatory bodies. Factors influencing trust, perceived safety, and willingness to adopt EFEBs are analyzed to provide insights into the successful integration of this technology. The findings of this research will contribute to the knowledge of fire safety technology and expand the understanding of the applicability of EFEBs in commercial vehicles.展开更多
A multi-component compressed air foam system (MCAFS) was developed with newly prepared multi-component foaming agents. Extinguishing of wood crib and oil pool fires was performed under different conditions, such as fo...A multi-component compressed air foam system (MCAFS) was developed with newly prepared multi-component foaming agents. Extinguishing of wood crib and oil pool fires was performed under different conditions, such as foam concentration, mixing chamber forepart structure and working pressure. It was found that the foam concentration had sufficient effects on fire extinguishing efficiency, and an optimized concentration value exists. For instance, for diesel oil pool fires, this value is about 2.2% while it is about 4.0% for wood crib fires. The results also show that the system with a coaxial mixing chamber has greater efficiency than a T-shape. The effects of working pressure on fire extin- guishing are evident in experiments, i.e., the higher the working pressure is, the more readily the fire is extinguished.展开更多
Based on the testing restult of character of forest fire, with the aid mold of flameextinguishing and mathematical method, the combustion of the forest fuels and the energy transtfer under the convention condition wer...Based on the testing restult of character of forest fire, with the aid mold of flameextinguishing and mathematical method, the combustion of the forest fuels and the energy transtfer under the convention condition were studied and the mechanism and interrelated elements of flameextinguishing with high velocity airflow were given. The energy formulae is given:Nz =Ka0 L0 (15)GH/102η through combustion calculation and test revision This formula was checked through simulated testing for extinguishing low, medial and high intensity fires with high velocity airflow.展开更多
文摘Fire incidents in commercial vehicles pose significant risks to passengers, drivers, and cargo. Traditional fire extinguishing systems, while effective, may have limitations in terms of response time, coverage, and human intervention [1]. This study investigates the efficacy of a novel fire suppression technology—the Exploding Fire Extinguishing Ball (EFEB) —as an alternative and complementary fire safety solution for commercial vehicles. The research employs a multidisciplinary approach, encompassing engineering, materials science, fire safety, and human factors analysis. A systematic literature review establishes a comprehensive understanding of existing fire suppression technologies, including EFEBs. Subsequently, this study analyzes the unique features of EFEBs, such as automatic activation, as well as manual activation upon exposure to fire, and their potential to provide rapid, localized, and autonomous fire suppression. The study presents original experimental investigations to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. Experiments include controlled fires in confined spaces and dynamic simulations to emulate real-world fire incidents. Data on activation times, extinguishing capability, and coverage area are collected and analyzed to compare the efficacy of EFEBs with traditional fire extinguishing methods. Furthermore, this research shows the practical aspects of implementing EFEBs in commercial vehicles. A feasibility study examines the integration challenges, cost-benefit analysis, and potential regulatory implications. The study also addresses the impact of EFEBs on vehicle weight, stability, and overall safety. Human factors and user acceptance are crucial elements in adopting new safety technologies. Therefore, this research utilizes an experimental design to assess the performance and effectiveness of EFEBs in various fire scenarios representative of commercial vehicles. This dissertation presents original controlled experiments to emulate real-world fire incidents, including controlled fires in confined spaces and dynamic simulations. The experimental approach ensures rigorous evaluation and objective insights into EFEBs’ potential as an autonomous fire suppression system for commercial vehicles. This includes the perspectives of drivers, passengers, fleet operators, insurance agencies, and regulatory bodies. Factors influencing trust, perceived safety, and willingness to adopt EFEBs are analyzed to provide insights into the successful integration of this technology. The findings of this research will contribute to the knowledge of fire safety technology and expand the understanding of the applicability of EFEBs in commercial vehicles.
基金Supported by the Natural Science Foundation of China (Grant No. 50774072)National Key Technology R&D Program (No. 2006BAK06B07)Program for New Century Excellent Talents in University (No. NECT-07-0794)
文摘A multi-component compressed air foam system (MCAFS) was developed with newly prepared multi-component foaming agents. Extinguishing of wood crib and oil pool fires was performed under different conditions, such as foam concentration, mixing chamber forepart structure and working pressure. It was found that the foam concentration had sufficient effects on fire extinguishing efficiency, and an optimized concentration value exists. For instance, for diesel oil pool fires, this value is about 2.2% while it is about 4.0% for wood crib fires. The results also show that the system with a coaxial mixing chamber has greater efficiency than a T-shape. The effects of working pressure on fire extin- guishing are evident in experiments, i.e., the higher the working pressure is, the more readily the fire is extinguished.
文摘Based on the testing restult of character of forest fire, with the aid mold of flameextinguishing and mathematical method, the combustion of the forest fuels and the energy transtfer under the convention condition were studied and the mechanism and interrelated elements of flameextinguishing with high velocity airflow were given. The energy formulae is given:Nz =Ka0 L0 (15)GH/102η through combustion calculation and test revision This formula was checked through simulated testing for extinguishing low, medial and high intensity fires with high velocity airflow.