期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of key factors on deflection of bonded prestressed concrete simply supported slabs subjected to fire 被引量:3
1
作者 郑文忠 欧阳志为 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期615-621,共7页
In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale p... In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale prestressed concrete slabs is further investigated through parameter expansion.The influences on fire resistance ratings controlled by deflection are explored and discussed,including effective span,concrete cover thickness,load level,prestress degree,effective prestress,composite reinforcement index and other factors.The calculated results indicate that fire resistance ratings of large-scale bonded prestressed concrete simply supported slabs are bigger than those of small-scale ones.Finally,the calculation formulas of fire resistance ratings controlled by deflection are established,which rationally consider the influence of effective span,concrete cover thickness,load level,composite reinforcement index and so on key factors. 展开更多
关键词 bonded prestressed concrete simply supported slabs fire resistance ratings controlled by deflection
下载PDF
Development of realistic design fire time-temperature :urves for the testing of cold-formed steel wall systems 被引量:1
2
作者 Anthony Deloge ARIYANAYAGAM Mahen MAHENDRAN 《Frontiers of Structural and Civil Engineering》 CSCD 2014年第4期427-447,共21页
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to high... Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modem buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behavior in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modem residential buildings are proposed for the testing of LSF walls. 展开更多
关键词 fire safety standard fire curve realistic design fire time-temperature curves light gauge steel frame (LSF) walls fuel load fire resistance rating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部