The consumption ofthermoset resins as building polymers is approximately over one million tone word wide. The thermoset resins are proven construction materials for the technical and highly demanding applications of t...The consumption ofthermoset resins as building polymers is approximately over one million tone word wide. The thermoset resins are proven construction materials for the technical and highly demanding applications of the transportation, electrical and building part industry. Heat stability, high thermal, low shrinkage, excellent mechanical properties are typical for their type of polymers. Above applications in addition to the mechanical properties also require good flame retardants of the materials. Undertaken activities refer to official draft, laws and legal recommendations in UE states. This paper presents positive effect of reduced flammability of thermoset resins (unsaturated polyester and epoxy resins) thanks to the use of nanocomposites containing multi-ingredient halogen-flee flame retardants which combine conventional phosphorus/nitrogen modifiers interacting with nanofillers (oMMT (organomodified montmorillonite), EG (expandable graphite), graphene, GO (graphene oxide), nSi (nanosilica)).展开更多
Polymeric materials are ubiquitously utilized in modern society and continuously improve quality of life.Unfortunately,most of them suffer from intrinsic flammability,significantly limiting their practical application...Polymeric materials are ubiquitously utilized in modern society and continuously improve quality of life.Unfortunately,most of them suffer from intrinsic flammability,significantly limiting their practical applications.Fundamentally,free-radical reaction is a critical“trigger”for their thermal pyrolysis and following combustion process regardless of the anaerobic thermal pyrolysis in the condensed phase or aerobic combustion of polymers in the gaseous phase.The addition of free radical scavengers represents a promising and effective means to enhance the fire safety of polymeric materials.This review aims to offer a state-of-the-art overview on the creation of fire-retardant polymeric nanocomposites by adding fire retardants with an ability to trap free radicals.Their specific modes of action(condensed-phase action,gaseous-phase action,and dual-phases action)and performances in some typical polymers are reviewed and discussed in detail.Following this,some key challenges associated with these free-radical capturers are discussed,and design strategies are also proposed.This review provides some insights into the modes of action of free radical capturing agents and paves the avenue for the design of advanced fire-retardant polymeric nanocomposites for expanded real-world applications in industries.展开更多
文摘The consumption ofthermoset resins as building polymers is approximately over one million tone word wide. The thermoset resins are proven construction materials for the technical and highly demanding applications of the transportation, electrical and building part industry. Heat stability, high thermal, low shrinkage, excellent mechanical properties are typical for their type of polymers. Above applications in addition to the mechanical properties also require good flame retardants of the materials. Undertaken activities refer to official draft, laws and legal recommendations in UE states. This paper presents positive effect of reduced flammability of thermoset resins (unsaturated polyester and epoxy resins) thanks to the use of nanocomposites containing multi-ingredient halogen-flee flame retardants which combine conventional phosphorus/nitrogen modifiers interacting with nanofillers (oMMT (organomodified montmorillonite), EG (expandable graphite), graphene, GO (graphene oxide), nSi (nanosilica)).
基金This work was financially supported by the National Natural Science Foundation of China(grant numbers:51991355,51873196,and 52173083)the Australian Research Council(grant numbers:FT190100188 and DP190102992)+1 种基金the Non-profit Project of Science and Technology Department of Ningbo(grant number:2019C50029)Public Technical Application Project of Zhejiang in Industry(grant number:LGG21E030004).
文摘Polymeric materials are ubiquitously utilized in modern society and continuously improve quality of life.Unfortunately,most of them suffer from intrinsic flammability,significantly limiting their practical applications.Fundamentally,free-radical reaction is a critical“trigger”for their thermal pyrolysis and following combustion process regardless of the anaerobic thermal pyrolysis in the condensed phase or aerobic combustion of polymers in the gaseous phase.The addition of free radical scavengers represents a promising and effective means to enhance the fire safety of polymeric materials.This review aims to offer a state-of-the-art overview on the creation of fire-retardant polymeric nanocomposites by adding fire retardants with an ability to trap free radicals.Their specific modes of action(condensed-phase action,gaseous-phase action,and dual-phases action)and performances in some typical polymers are reviewed and discussed in detail.Following this,some key challenges associated with these free-radical capturers are discussed,and design strategies are also proposed.This review provides some insights into the modes of action of free radical capturing agents and paves the avenue for the design of advanced fire-retardant polymeric nanocomposites for expanded real-world applications in industries.