In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and coo...In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and cooling the stack.Metal BPs,characterized by outstanding manufacturability,cost-effectiveness,higher power density,and mechanical strength,are emerging as viable alternatives to traditional graphite BPs.The foremost challenge for metal BPs lies in enhancing their corrosion resistance and conductivity under acidic conditions,necessitating the application of various coatings on their surfaces to ensure superior performance.This review summarizes and compares recent advancements in the research of eight distinct types of coatings for BPs in PEMFCs,including noble metal,carbide,ni-tride,and amorphous carbon(a-C)/metal compound composite coatings.The various challenges encountered in the manufacturing and fu-ture application of these coatings are also delineated.展开更多
Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field.A novel theoretical method through an inverse composition design route,i.e.initially ens...Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field.A novel theoretical method through an inverse composition design route,i.e.initially ensuring the oxide scale with excellent anti-ablation stability,is proposed to improve the ablation resistance of the highentropy carbide coatings.In this work,the(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))C1-δ(HEC)coatings were prepared by the inverse design concept and verified by the ablation resistance experiment.The linear ablation rate of the HEC coatings is1.45μm/s,only 4.78%of the pristine HfC coatings after the oxyacetylene ablation at 4.18 MW/m2.The HEC possesses higher toughness with a higher Pugh's ratio of 1.55 in comparison with HfC(1.30).The in-situ formed dense(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))O2-δoxide scale during ablation benefits to improve the anti-ablation performance attributed to its high structural adaptability with a lattice constant change not exceeding 0.19%at 2000-2300℃.The current investigation demonstrates the effectiveness of the inverse theoretical design,providing a novel optimization approach for ablation protection of high-entropy carbide coatings.展开更多
The dispersion state of nano-TiO2 particles was studied by using transmission electron microscopy (TEM)and Fourier transform infrared spectroscopy (FT-IR). Nanoparticles can be fully dispersed by specific hyperdis...The dispersion state of nano-TiO2 particles was studied by using transmission electron microscopy (TEM)and Fourier transform infrared spectroscopy (FT-IR). Nanoparticles can be fully dispersed by specific hyperdispersant. The improvement of nano-TiO2 in thermal behavior and flame retardation of acrylic polymer and fire-resistant coating was investigated by differential thermal analysis (DTA), thermogravimetry (TG)and fire-resistant time test. It is demonstrated that nano-TiO2 is helpful for enhancing the thermal stability,anti-oxidation and fire-resistant properties of acrylic polymer and fire-resistant coating.展开更多
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res...The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.展开更多
It is necessary to develop burn-resistant and thermal barrier complex functional coatings on the titanium alloys surface due to the poor high temperature performance for titanium materials and the problem of“titanium...It is necessary to develop burn-resistant and thermal barrier complex functional coatings on the titanium alloys surface due to the poor high temperature performance for titanium materials and the problem of“titanium fire”which is easily happened.MTU Aero Engines GmbH has developed a complex functional coating which has great performance of burn resistant and sealing,the coatings has already been applied on compressor blades and casing for aero-engines and showed great performance.In this study,the complex functional coating which is composed of an electro-spark deposited amorphous Ti40Zr25Ni3 burn-resistant layer and a high-energy plasma spraying prepared YSZ thermal barrier layer was prepared on titanium alloys surface.Then the heat insulation ability,burn resistant performance and the bonding strength were investigated.The experimental results showed that the interface between the coating and the matrix was typical metallurgical bonded,and the average bonding strength was 36.335 MPa;when the temperature of the flame on the one side of the specimen reached 600℃,the average insulated temperature of the coating samples was 70.67℃;when the flame temperature was 350℃,the titanium samples without the complex functional coatings were burned,while the samples with the coating showed great performance of burn resistant even when the temperature was 750℃.This indicates that the new functional coating has good heat-insulating and burn-resistant performance.展开更多
Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium allo...Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating.展开更多
A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardnes...A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardness,elastic modulus,and bonding strength of the coating were measured.The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test.The results indicated that the coating was compact and the porosity was only 1.5%.The phase of the coating was mainly composed ofα-Al andβ-Si as well as some hard particles(Al9Si,Al3.21Si0.47,and CuAl2).The average microhardness of the coating was HV 242,which was greater than that of 2A12 aluminum alloy(HV 110).The wear resistance of the coating was superior to 2A12 aluminum alloy.The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear,while that of the coating was primarily abrasive wear.Therefore,it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.展开更多
Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼1...Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼14µm thick and rough PEO protection layer has inferior wear resistance,which limits magnesium alloys as sliding or reciprocating parts,where magnesium alloys have special advantages by their inherent damping and denoising properties and attractive light-weighting.Here a novel super wear-resistant coating for magnesium alloys was achieved,via the discontinuous sealing(DCS)of a 1.3µm thick polytetrafluoroethylene(PTFE)polymer layer with an initial area fraction(A_(f))of 70%on the necessary PEO protection layer by selective spraying,and the wear resistance was exceptionally enhanced by∼5500 times in comparison with the base PEO coating.The initial surface roughness(Sa)under PEO+DCS(1.54µm)was imperfectly 59%higher than that under PEO and conventional continuous sealing(CS).Interestingly,DCS was surprisingly 20 times superior for enhancing wear resistance in contrast to CS.DCS induced nano-cracks that splitted DCS layer into multilayer nano-blocks,and DCS also provided extra space for the movement of nano-blocks,which resulted in rolling friction and nano lubrication.Further,DCS promoted mixed wear of the PTFE polymer layer and the PEO coating,and the PTFE layer(HV:6 Kg·mm^(−2),A_(f):92.2%)and the PEO coating(HV:310 Kg·mm^(−2),A_(f):7.8%)served as the soft matrix and the hard point,respectively.Moreover,the dynamic decrease of Sa by 29%during wear also contributed to the super wear resistance.The strategy of depositing a low-frictional discontinuous layer on a rough and hard layer or matrix also opens a window for achieving super wear-resistant coatings in other materials.展开更多
In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of...In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate, etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.展开更多
The complex coating on the MgO CaO clinker was prepared by dipping method and adding the second mineral to restrain the formation and expansion of the cracks. Meanwhile, the microstructure and the morphology of the c...The complex coating on the MgO CaO clinker was prepared by dipping method and adding the second mineral to restrain the formation and expansion of the cracks. Meanwhile, the microstructure and the morphology of the coating and hydration resistance of the MgO CaO clinker were also investigated. The result shows that the coating consists mainly of Ca 2P 2O 7, MgO and CaCO 3, its thickness ranges from 5μm to 20μm, and the coating is dense and even, no micro cracks are observed. Also, the coating adheres closely to the matrix. The hydration resistance of the MgO CaO clinker after treatment is improved greatly, and the castables prepared with the treated MgO CaO clinker have better physical properties than MgO castable.展开更多
As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pol...As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.展开更多
1 Scope This standard specifies the term, definition, classification, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of coating r...1 Scope This standard specifies the term, definition, classification, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of coating resistant refractory eastables.展开更多
TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear r...TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.展开更多
Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat...Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.展开更多
To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is comp...To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.展开更多
In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology ...In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.展开更多
A columnar Al film was firstly deposited on the top of 7%Y2O3?stabilized zirconia (7YSZ) ceramic coating in thermal barrier coating (TBC) system by magnetron sputtering. A vacuum treatment was then carried out at...A columnar Al film was firstly deposited on the top of 7%Y2O3?stabilized zirconia (7YSZ) ceramic coating in thermal barrier coating (TBC) system by magnetron sputtering. A vacuum treatment was then carried out at 700 °C for 1 h and 900 °C for 5 h to improve the erosion resistance of Al-deposited TBC. Aα-Al2O3 layer was in situ synthesized on the top of 7YSZ coating via vacuum heat treatment. The microstructure evolution of Al-deposited TBC illustrated that a loose surface-layer and a dense sub-layer formed on the top of 7YSZ coating after vacuum treatment. The phase structures of the as-sprayed TBC and the Al-deposited TBC after vacuum heat treatment were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) assisted with focused ion beam (FIB). Particulate erosion resistances of the as-sprayed TBC and treated TBC were compared at room temperature. In addition, erosion mechanism and schematic diagram were proposed. The results show that the Al-deposited TBC after vacuum heat treatment has better particulate erosion resistance than the as-sprayed one.展开更多
The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-...The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-fuel (HVOF) spraying. The corrosion resistance of Fe-AMMC was investigated by potentiodynamic polarization tests in 1 mol/L HCl, NaCl, H2SO4 and NaOH solutions, respectively. The surface morphologies corroded were observed by SEM. The results indicate that Fe-AMMC exhibits excellent corrosion resistance, higher corrosion resistance than 304L stainless steel in the chloride solutions. The low corrosion current density and passive current density of Fe-AMMC with a wide spontaneous passivation region are about 132.0μA/cm2 and 9.0 mA/cm2 in HCl solution, and about 2.5 μA/cm2 and 2.3 mA/cm2 in NaCl solution. The excellent corrosion resistance demonstrates that Fe-based amorphous metallic matrix powder is a viable engineering material in practical anti-corrosion and anti-wear coating applications.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
基金the support from the Shenzhen Science and Technology Program of China(No.JCYJ20220530161614031)National Natural Science Foundation of China(No.52471094)Shaanxi Coal Chemical Industry Technology Research Institute Co.,Ltd.
文摘In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and cooling the stack.Metal BPs,characterized by outstanding manufacturability,cost-effectiveness,higher power density,and mechanical strength,are emerging as viable alternatives to traditional graphite BPs.The foremost challenge for metal BPs lies in enhancing their corrosion resistance and conductivity under acidic conditions,necessitating the application of various coatings on their surfaces to ensure superior performance.This review summarizes and compares recent advancements in the research of eight distinct types of coatings for BPs in PEMFCs,including noble metal,carbide,ni-tride,and amorphous carbon(a-C)/metal compound composite coatings.The various challenges encountered in the manufacturing and fu-ture application of these coatings are also delineated.
基金supported by the National Key R&D Program of China(2022YFB3708600,2021YFA0715802)Aeronautical Science Foundation of China(2022Z055053004)+1 种基金Fund of Key Laboratory of National Defense Science and Technology(WDZC20235250505)National Major Science and Technology Projects of China(J2022-VI-0011-0042).
文摘Composition design of high-entropy carbides is a topic of great scientific interest for the hot-end parts in the aerospace field.A novel theoretical method through an inverse composition design route,i.e.initially ensuring the oxide scale with excellent anti-ablation stability,is proposed to improve the ablation resistance of the highentropy carbide coatings.In this work,the(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))C1-δ(HEC)coatings were prepared by the inverse design concept and verified by the ablation resistance experiment.The linear ablation rate of the HEC coatings is1.45μm/s,only 4.78%of the pristine HfC coatings after the oxyacetylene ablation at 4.18 MW/m2.The HEC possesses higher toughness with a higher Pugh's ratio of 1.55 in comparison with HfC(1.30).The in-situ formed dense(Hf_(0.36)Zr_(0.24)Ti_(0.1)Sc_(0.1)Y_(0.1)La_(0.1))O2-δoxide scale during ablation benefits to improve the anti-ablation performance attributed to its high structural adaptability with a lattice constant change not exceeding 0.19%at 2000-2300℃.The current investigation demonstrates the effectiveness of the inverse theoretical design,providing a novel optimization approach for ablation protection of high-entropy carbide coatings.
文摘The dispersion state of nano-TiO2 particles was studied by using transmission electron microscopy (TEM)and Fourier transform infrared spectroscopy (FT-IR). Nanoparticles can be fully dispersed by specific hyperdispersant. The improvement of nano-TiO2 in thermal behavior and flame retardation of acrylic polymer and fire-resistant coating was investigated by differential thermal analysis (DTA), thermogravimetry (TG)and fire-resistant time test. It is demonstrated that nano-TiO2 is helpful for enhancing the thermal stability,anti-oxidation and fire-resistant properties of acrylic polymer and fire-resistant coating.
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金financially supported by the National Natural Science Foundation of China(22178242)the Shanxi Provincial Key Research and Development Project(202102040201009).
文摘The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.
文摘It is necessary to develop burn-resistant and thermal barrier complex functional coatings on the titanium alloys surface due to the poor high temperature performance for titanium materials and the problem of“titanium fire”which is easily happened.MTU Aero Engines GmbH has developed a complex functional coating which has great performance of burn resistant and sealing,the coatings has already been applied on compressor blades and casing for aero-engines and showed great performance.In this study,the complex functional coating which is composed of an electro-spark deposited amorphous Ti40Zr25Ni3 burn-resistant layer and a high-energy plasma spraying prepared YSZ thermal barrier layer was prepared on titanium alloys surface.Then the heat insulation ability,burn resistant performance and the bonding strength were investigated.The experimental results showed that the interface between the coating and the matrix was typical metallurgical bonded,and the average bonding strength was 36.335 MPa;when the temperature of the flame on the one side of the specimen reached 600℃,the average insulated temperature of the coating samples was 70.67℃;when the flame temperature was 350℃,the titanium samples without the complex functional coatings were burned,while the samples with the coating showed great performance of burn resistant even when the temperature was 750℃.This indicates that the new functional coating has good heat-insulating and burn-resistant performance.
基金support from the Fundamental Research Funds for the Central Universities of Hohai university(B200202122)National Natural Science Foundation of China(51878246 and 51979099)+1 种基金the Natural Science Foundation of Jiangsu Province of China(BK20191303)Key Research and Development Project of Jiangsu Province of China(BE2017148).
文摘Formation of super-hydrophobic and corrosion-resistant coatings can provide significant corrosion protection to magnesium alloys.However,it remains a grand challenge to produce such coatings for magnesium-lithium alloys due to their high chemical reactivity.Herein,a one-step hydrothermal processing was developed using a stearic-acid-based precursor medium,which enables the hydrothermal conversion and the formation of low surface energy materials concurrently to produce the super-hydrophobic and corrosion-resistant coating.The multiscale microstructures with nanoscale stacks and microscale spheres on the surface,as well as the through-thickness stearates,lead to the super-hydrophobicity and excellent corrosion resistance of the obtained coating.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51675158,51535011,and 51675531)the Natural Science Foundation of Hebei Province(No.E2016202325)the Beijing Municipal Natural Science Foundation(No.3172038).
文摘A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardness,elastic modulus,and bonding strength of the coating were measured.The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test.The results indicated that the coating was compact and the porosity was only 1.5%.The phase of the coating was mainly composed ofα-Al andβ-Si as well as some hard particles(Al9Si,Al3.21Si0.47,and CuAl2).The average microhardness of the coating was HV 242,which was greater than that of 2A12 aluminum alloy(HV 110).The wear resistance of the coating was superior to 2A12 aluminum alloy.The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear,while that of the coating was primarily abrasive wear.Therefore,it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.
基金This work was financially supported by the Jiangsu Distinguished Professor Project,the Innovate UK(Project reference:10004694)the National Key R&D Program of China 2021YFB3401200.The Experimental Techniques Centre at Brunel University London and Nanjing University of Aeronautics and Astronautics are acknowledged.The authors also acknowledge the characterization facility at Shanghai Jiao Tong University,Central South University,University of Birmingham and University of Lille.
文摘Magnesium alloys are lightweight materials with great potential,and plasma electrolytic oxidation(PEO)is effective surface treatment for necessary improvement of corrosion resistance of magnesium alloys.However,the∼14µm thick and rough PEO protection layer has inferior wear resistance,which limits magnesium alloys as sliding or reciprocating parts,where magnesium alloys have special advantages by their inherent damping and denoising properties and attractive light-weighting.Here a novel super wear-resistant coating for magnesium alloys was achieved,via the discontinuous sealing(DCS)of a 1.3µm thick polytetrafluoroethylene(PTFE)polymer layer with an initial area fraction(A_(f))of 70%on the necessary PEO protection layer by selective spraying,and the wear resistance was exceptionally enhanced by∼5500 times in comparison with the base PEO coating.The initial surface roughness(Sa)under PEO+DCS(1.54µm)was imperfectly 59%higher than that under PEO and conventional continuous sealing(CS).Interestingly,DCS was surprisingly 20 times superior for enhancing wear resistance in contrast to CS.DCS induced nano-cracks that splitted DCS layer into multilayer nano-blocks,and DCS also provided extra space for the movement of nano-blocks,which resulted in rolling friction and nano lubrication.Further,DCS promoted mixed wear of the PTFE polymer layer and the PEO coating,and the PTFE layer(HV:6 Kg·mm^(−2),A_(f):92.2%)and the PEO coating(HV:310 Kg·mm^(−2),A_(f):7.8%)served as the soft matrix and the hard point,respectively.Moreover,the dynamic decrease of Sa by 29%during wear also contributed to the super wear resistance.The strategy of depositing a low-frictional discontinuous layer on a rough and hard layer or matrix also opens a window for achieving super wear-resistant coatings in other materials.
基金Financial support from Natural Science Foundation of Shanxi Province(grants No.20011044)Youth Technologic Foundation of Shanxi Province(grants No.20041023)is gratefully acknowledged.
文摘In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate, etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.
文摘The complex coating on the MgO CaO clinker was prepared by dipping method and adding the second mineral to restrain the formation and expansion of the cracks. Meanwhile, the microstructure and the morphology of the coating and hydration resistance of the MgO CaO clinker were also investigated. The result shows that the coating consists mainly of Ca 2P 2O 7, MgO and CaCO 3, its thickness ranges from 5μm to 20μm, and the coating is dense and even, no micro cracks are observed. Also, the coating adheres closely to the matrix. The hydration resistance of the MgO CaO clinker after treatment is improved greatly, and the castables prepared with the treated MgO CaO clinker have better physical properties than MgO castable.
基金Financial support from the National Natural Science Foundation of China(No.21676216)Special project of Shaanxi Provincial Education Department,China(20JC034)+1 种基金Basic research program of Natural Science in Shaanxi Province,China(2019JLP-03)Innovation project of college students in Shaanxi Province,China(S202010697054)are gratefully acknowledged.
文摘As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.
文摘1 Scope This standard specifies the term, definition, classification, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of coating resistant refractory eastables.
基金Project(KFJJ10-15M) supported by the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,ChinaProject(E2013208101) supported by the Nature Science Fund of Hebei Province,China+1 种基金Project(Z2012100) supported by Colleges and Universities Science and Technology Research Fund of Hebei Province,ChinaProject supported by the Outstanding Youth Fund of Hebei University of Science and Technology,China
文摘TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.
基金Project(51571134)supported by the National Natural Science Foundation of ChinaProject(2014TDJH104)supported by the SDUST Research Fund+1 种基金the Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Province,ChinaProject(cstc2012jj A50034)supported by the Natural Science Foundation of Chongqing,China
文摘Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.
基金Project (2012M511752) supported by China Postdoctoral Science FoundationProject (2011CB605801) supported by the National Basical Research Program of China+3 种基金Project (2012QNZT004) supported by the Fundamental Research Funds of the Central Universities, ChinaProject supported by the Freedom Explore Program of Central South University, ChinaProject (CSUZC2012026) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.
基金Projects(51171172,51131005)supported by the National Natural Science Foundation of ChinaProject(R16E010001)supported by Zhejiang Provincial Natural Science Foundation of China+1 种基金Project(2015QNA3011)supported by Fundamental Research Funds for the Central Universities,ChinaProject(14DZ2261000)supported by Science and Technology Commission of Shanghai Municipality,China
文摘In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.
基金Project(2012CB625100)supported by the National Basic Research Program of ChinaProject(2012AA03A512)supported by the National High-tech Research and Development Program of China
文摘A columnar Al film was firstly deposited on the top of 7%Y2O3?stabilized zirconia (7YSZ) ceramic coating in thermal barrier coating (TBC) system by magnetron sputtering. A vacuum treatment was then carried out at 700 °C for 1 h and 900 °C for 5 h to improve the erosion resistance of Al-deposited TBC. Aα-Al2O3 layer was in situ synthesized on the top of 7YSZ coating via vacuum heat treatment. The microstructure evolution of Al-deposited TBC illustrated that a loose surface-layer and a dense sub-layer formed on the top of 7YSZ coating after vacuum treatment. The phase structures of the as-sprayed TBC and the Al-deposited TBC after vacuum heat treatment were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) assisted with focused ion beam (FIB). Particulate erosion resistances of the as-sprayed TBC and treated TBC were compared at room temperature. In addition, erosion mechanism and schematic diagram were proposed. The results show that the Al-deposited TBC after vacuum heat treatment has better particulate erosion resistance than the as-sprayed one.
基金Project(EA201103238)supported by Nanchang Hangkong University Doctor Startup Fund,China
文摘The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-fuel (HVOF) spraying. The corrosion resistance of Fe-AMMC was investigated by potentiodynamic polarization tests in 1 mol/L HCl, NaCl, H2SO4 and NaOH solutions, respectively. The surface morphologies corroded were observed by SEM. The results indicate that Fe-AMMC exhibits excellent corrosion resistance, higher corrosion resistance than 304L stainless steel in the chloride solutions. The low corrosion current density and passive current density of Fe-AMMC with a wide spontaneous passivation region are about 132.0μA/cm2 and 9.0 mA/cm2 in HCl solution, and about 2.5 μA/cm2 and 2.3 mA/cm2 in NaCl solution. The excellent corrosion resistance demonstrates that Fe-based amorphous metallic matrix powder is a viable engineering material in practical anti-corrosion and anti-wear coating applications.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.