This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)...Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.展开更多
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi...The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.展开更多
In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput wi...In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput with high packet loss.In this paper,a Modified Firefly Optimization Algorithm improved Fuzzy Scheduler-based Packet Scheduling(MFPA-FSPS)Mechanism is proposed for sustaining Quality of Service(QoS)in the network.This MFPA-FSPS mechanism included a Fuzzy-based priority scheduler by inheriting the merits of the Sugeno Fuzzy inference system that potentially and adaptively estimated packets’priority for guaranteeing optimal network performance.It further used the modified Firefly Optimization Algorithm to optimize the rules uti-lized by the fuzzy inference engine to achieve the potential packet scheduling pro-cess.This adoption of a fuzzy inference engine used dynamic optimization that guaranteed excellent scheduling of the necessitated packets at an appropriate time with minimized waiting time.The statistical validation of the proposed MFPA-FSPS conducted using a one-way Analysis of Variance(ANOVA)test confirmed its predominance over the benchmarked schemes used for investigation.展开更多
CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferrin...CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.展开更多
In a Power System, load is the most uncertain and extremely time varying unit. Hence it is important to determine the system’s supreme acceptable loadability limit called maximum loadability point to accommodate...In a Power System, load is the most uncertain and extremely time varying unit. Hence it is important to determine the system’s supreme acceptable loadability limit called maximum loadability point to accommodate the sudden variation of load demand. Nowadays the enhancement of the maximum loadability point is essential to meet the rapid growth of load demand by improvising the system’s load utilization capacity. Flexible AC Transmission system devices (FACTS) with their speed and flexibility will play a key role in enhancing the controllability and power transfer capability of the system. Considering the theme of FACTS devices in the loadability limit enhancement, in this paper maximum loadability limit determination and its enhancement are prepared with the help of swarm intelligence based meta-heuristic Firefly Algorithm(FFA) by finding the optimal loading factor for each load and optimally placing the SVC (Shunt Compensation) and TCSC (Series Compensation) FACTS devices in the system. To illuminate the effectiveness of FACTS devices in the loadability enhancement, the line contingency scenario is also concerned in the study. The study of FACTS based maximum system load utilization acceptability point determination is demonstrated with the help of modified IEEE 30 bus, IEEE 57 Bus and IEEE 118 Bus test systems. The results of FACTS devices involvement in determining the maximum loading point enhance the load utilization point in normal state and also help to overcome the system violation in transmissionline contingency state. Also the firefly algorithm in determining the maximum loadability point provides better search capability with faster convergence rate compared to that of Particle swarm optimization (PSO) and Differential evolution algorithm.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity pro...Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.展开更多
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金supported by the NationalNatural Science Foundation of China(No.11672098).
文摘Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.
基金funded by King Saud University,Riyadh,Saudi Arabia.Researchers Supporting Proiect Number(RSP2023R167)King Saud University,Riyadh,Saudi Arabia.
文摘The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.
文摘In Mobile ad hoc Networks(MANETs),the packet scheduling process is considered the major challenge because of error-prone connectivity among mobile nodes that introduces intolerable delay and insufficient throughput with high packet loss.In this paper,a Modified Firefly Optimization Algorithm improved Fuzzy Scheduler-based Packet Scheduling(MFPA-FSPS)Mechanism is proposed for sustaining Quality of Service(QoS)in the network.This MFPA-FSPS mechanism included a Fuzzy-based priority scheduler by inheriting the merits of the Sugeno Fuzzy inference system that potentially and adaptively estimated packets’priority for guaranteeing optimal network performance.It further used the modified Firefly Optimization Algorithm to optimize the rules uti-lized by the fuzzy inference engine to achieve the potential packet scheduling pro-cess.This adoption of a fuzzy inference engine used dynamic optimization that guaranteed excellent scheduling of the necessitated packets at an appropriate time with minimized waiting time.The statistical validation of the proposed MFPA-FSPS conducted using a one-way Analysis of Variance(ANOVA)test confirmed its predominance over the benchmarked schemes used for investigation.
文摘CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.
文摘In a Power System, load is the most uncertain and extremely time varying unit. Hence it is important to determine the system’s supreme acceptable loadability limit called maximum loadability point to accommodate the sudden variation of load demand. Nowadays the enhancement of the maximum loadability point is essential to meet the rapid growth of load demand by improvising the system’s load utilization capacity. Flexible AC Transmission system devices (FACTS) with their speed and flexibility will play a key role in enhancing the controllability and power transfer capability of the system. Considering the theme of FACTS devices in the loadability limit enhancement, in this paper maximum loadability limit determination and its enhancement are prepared with the help of swarm intelligence based meta-heuristic Firefly Algorithm(FFA) by finding the optimal loading factor for each load and optimally placing the SVC (Shunt Compensation) and TCSC (Series Compensation) FACTS devices in the system. To illuminate the effectiveness of FACTS devices in the loadability enhancement, the line contingency scenario is also concerned in the study. The study of FACTS based maximum system load utilization acceptability point determination is demonstrated with the help of modified IEEE 30 bus, IEEE 57 Bus and IEEE 118 Bus test systems. The results of FACTS devices involvement in determining the maximum loading point enhance the load utilization point in normal state and also help to overcome the system violation in transmissionline contingency state. Also the firefly algorithm in determining the maximum loadability point provides better search capability with faster convergence rate compared to that of Particle swarm optimization (PSO) and Differential evolution algorithm.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
基金supported by the National Basic Research Program of China(No.2013CB228602)the National Science and Technology Major Project of China(No.2011ZX05004-003)the National High Technology Research Program of China(No.2013AA064202)
文摘Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.