In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to ...In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.展开更多
This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous drivi...This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the...Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.展开更多
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor...Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.展开更多
Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human f...Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.展开更多
The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firep...The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.展开更多
According to the size of the projector function to evaluate the merits of the program, Projection Pursuit method is applied to real estate investment decision-making by using the real coding based on Accelerating Gene...According to the size of the projector function to evaluate the merits of the program, Projection Pursuit method is applied to real estate investment decision-making by using the real coding based on Accelerating Genetic Algorithm (RAGA) to optimize the Projection Pursuit Classification (PPC) process and a wide range of indicators value was projected linearly. The results are reasonable and verified with an example. At the same time, the subjective of the target weight can be avoided. It provides decision-makers with comprehensive information on all the indicators of new ideas and new展开更多
Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for eva...Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for evaluation of the residual function of the liver prior to the intervention of the surgeons. For this purpose, a complete software platform consisting of three basic modules: liver volume segmentation, visualization, and virtual cutting, was developed and tested. Liver volume segmentation is based on a patient examination with non-contrast abdominal Computed Tomography (CT). The basis of the segmentation is a multiple seeded region growing algorithm adapted for use with CT images without contrast-enhancement. Virtual tumor resection is performed interactively by outlining the liver region on the CT images. The software application then processes the results to produce a three-dimensional (3D) image of the “resected” region. Finally, 3D rendering module provides possibility for easy and fast interpretation of the segmentation results. The visual outputs are accompanied with quantitative measures that further provide estimation of the residual liver function and based on them the surgeons could make a better decision. The developed system was tested and verified with twenty abdominal CT patient sets consisting of different numbers of tomographic images. Volumes, obtained by manual tracing of two surgeon experts, showed a mean relative difference of 4.5%. The application was used in a study that demonstrates the need and the added value of such a tool in practice and in education.展开更多
Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinfo...Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.展开更多
Information about the relative importance of each criterion or theweights of criteria can have a significant influence on the ultimate rank of alternatives.Accordingly,assessing the weights of criteria is a very impor...Information about the relative importance of each criterion or theweights of criteria can have a significant influence on the ultimate rank of alternatives.Accordingly,assessing the weights of criteria is a very important task in solving multi-criteria decision-making problems.Three methods are commonly used for assessing the weights of criteria:objective,subjective,and integrated methods.In this study,an objective approach is proposed to assess the weights of criteria,called SPCmethod(Symmetry Point of Criterion).This point enriches the criterion so that it is balanced and easy to implement in the process of the evaluation of its influence on decision-making.The SPC methodology is systematically presented and supported by detailed calculations related to an artificial example.To validate the developed method,we used our numerical example and calculated the weights of criteria by CRITIC,Entropy,Standard Deviation and MEREC methods.Comparative analysis between these methods and the SPC method reveals that the developedmethod is a very reliable objective way to determine the weights of criteria.Additionally,in this study,we proposed the application of SPCmethod to evaluate the efficiency of themulti-criteria partitioning algorithm.The main idea of the evaluation is based on the following fact:the greater the uniformity of the weights of criteria,the higher the efficiency of the partitioning algorithm.The research demonstrates that the SPC method can be applied to solving different multi-criteria problems.展开更多
Given the challenge of estimating or calculating quantities of waste electrical and electronic equipment(WEEE)in developing countries,this article focuses on predicting the WEEE generated by Cameroonian small and medi...Given the challenge of estimating or calculating quantities of waste electrical and electronic equipment(WEEE)in developing countries,this article focuses on predicting the WEEE generated by Cameroonian small and medium enterprises(SMEs)that are engaged in ISO 14001:2015 initiatives and consume electrical and electronic equipment(EEE)to enhance their performance and profitability.The methodology employed an exploratory approach involving the application of general equilibrium theory(GET)to contextualize the study and generate relevant parameters for deploying the random forest regression learning algorithm for predictions.Machine learning was applied to 80%of the samples for training,while simulation was conducted on the remaining 20%of samples based on quantities of EEE utilized over a specific period,utilization rates,repair rates,and average lifespans.The results demonstrate that the model’s predicted values are significantly close to the actual quantities of generated WEEE,and the model’s performance was evaluated using the mean squared error(MSE)and yielding satisfactory results.Based on this model,both companies and stakeholders can set realistic objectives for managing companies’WEEE,fostering sustainable socio-environmental practices.展开更多
This paper delves into the intricate interplay between artificial intelligence(AI)systems and the perpetuation of Anti-Black racism within the United States medical industry.Despite the promising potential of AI to en...This paper delves into the intricate interplay between artificial intelligence(AI)systems and the perpetuation of Anti-Black racism within the United States medical industry.Despite the promising potential of AI to enhance healthcare outcomes and reduce disparities,there is a growing concern that these technologies may inadvertently/advertently exacerbate existing racial inequalities.Focusing specifically on the experiences of Black patients,this research investigates how the following AI components:medical algorithms,machine learning,and natural learning processes are contributing to the unequal distribution of medical resources,diagnosis,and health care treatment of those classified as Black.Furthermore,this review employs a multidisciplinary approach,combining insights from computer science,medical ethics,and social justice theory to analyze the mechanisms through which AI systems may encode and reinforce racial biases.By dissecting the three primary components of AI,this paper aims to present a clear understanding of how these technologies work,how they intersect,and how they may inherently perpetuate harmful stereotypes resulting in negligent outcomes for Black patients.Furthermore,this paper explores the ethical implications of deploying AI in healthcare settings and calls for increased transparency,accountability,and diversity in the development and implementation of these technologies.Finally,it is important that I prefer the following paper with a clear and concise definition of what I refer to as Anti-Black racism throughout the text.Therefore,I assert the following:Anti-Black racism refers to prejudice,discrimination,or antagonism directed against individuals or communities of African descent based on their race.It involves the belief in the inherent superiority of one race over another and the systemic and institutional practices that perpetuate inequality and disadvantage for Black people.Furthermore,I proclaim that this form of racism can be manifested in various ways,such as unequal access to opportunities,resources,education,employment,and fair treatment within social,economic,and political systems.It is also pertinent to acknowledge that Anti-Black racism is deeply rooted in historical and societal structures throughout the U.S.borders and beyond,leading to systemic disadvantages and disparities that impact the well-being and life chances of Black individuals and communities.Addressing Anti-Black racism involves recognizing and challenging both individual attitudes and systemic structures that contribute to discrimination and inequality.Efforts to combat Anti-Black racism include promoting awareness,education,advocacy for policy changes,and fostering a culture of inclusivity and equality.展开更多
An online algorithm balancing the efficiency and equity principles is proposed for the kidney resource assignment when only the current patient and resource information is known to the assignment network. In the algor...An online algorithm balancing the efficiency and equity principles is proposed for the kidney resource assignment when only the current patient and resource information is known to the assignment network. In the algorithm, the assignment is made according to the priority, which is calculated according to the efficiency principle and the equity principle. The efficiency principle is concerned with the post-transplantation immunity spending caused by the possible post-operation immunity rejection and patient’s mental depression due to the HLA mismatch. The equity principle is concerned with three other factors, namely the treatment spending incurred starting from the day of registering with the kidney assignment network, the post-operation immunity spending and the negative effects of waiting for kidney resources on the clinical efficiency. The competitive analysis conducted through computer simulation indicates that the efficiency competitive ratio is between 6.29 and 10.43 and the equity competitive ratio is between 1.31 and 5.21, demonstrating that the online algorithm is of great significance in application.展开更多
文摘In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.
基金funded by Chongqing Science and Technology Bureau (No.cstc2021jsyj-yzysbAX0008)Chongqing University of Arts and Sciences (No.P2021JG13)2021 Humanities and Social Sciences Program of Chongqing Education Commission (No.21SKGH227).
文摘This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
基金Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the LargeGroup Research Project underGrant Number(R.G.P.2/181/44).
文摘Spherical fuzzy soft expert set(SFSES)theory blends the perks of spherical fuzzy sets and group decision-making into a unified approach.It allows solutions to highly complicated uncertainties and ambiguities under the unbiased supervision and group decision-making of multiple experts.However,SFSES theory has some deficiencies such as the inability to interpret and portray the bipolarity of decision-parameters.This work highlights and overcomes these limitations by introducing the novel spherical fuzzy bipolar soft expert sets(SFBSESs)as a powerful hybridization of spherical fuzzy set theory with bipolar soft expert sets(BSESs).Followed by the development of certain set-theoretic operations and properties of the proposed model,important problems,including the selection of non-powered dam(NPD)sites for hydropower conversion are discussed and solved under the proposed approach.These problems mainly focus on the need for an efficient tool capable of considering the bipolarity of parameters,complicated ambiguities,and multiple opinions.Supporting the new approach by a detailed comparative analysis,it is concluded that the proposed model is more comprehensive and reliable for multi-attribute group decisionmaking(MAGDM)than the previous tools,particularly considering the bipolarity of parameters under SFSES environment.
基金This research was funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA.
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Foundation of Air Force Engineering University(KGD08101604)
文摘Aiming at the intervention decision-making problem in manned/unmanned aerial vehicle(MAV/UAV) cooperative engagement, this paper carries out a research on allocation strategy of emergency discretion based on human factors engineering(HFE).Firstly, based on the brief review of research status of HFE, it gives structural description to emergency in the process of cooperative engagement and analyzes intervention of commanders. After that,constraint conditions of intervention decision-making of commanders based on HFE(IDMCBHFE) are given, and the mathematical model, which takes the overall efficiency value of handling emergencies as the objective function, is established. Then, through combining K-best and variable neighborhood search(VNS) algorithm, a K-best optimization variable neighborhood search mixed algorithm(KBOVNSMA) is designed to solve the model. Finally,through three groups of simulation experiments, effectiveness and superiority of the proposed algorithm are verified.
基金supported by the National Natural Science Foundation of China (10377014)the Innovation Foundation of Northwestern Polytechnical university (2007KJ01027)
文摘The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.
文摘According to the size of the projector function to evaluate the merits of the program, Projection Pursuit method is applied to real estate investment decision-making by using the real coding based on Accelerating Genetic Algorithm (RAGA) to optimize the Projection Pursuit Classification (PPC) process and a wide range of indicators value was projected linearly. The results are reasonable and verified with an example. At the same time, the subjective of the target weight can be avoided. It provides decision-makers with comprehensive information on all the indicators of new ideas and new
文摘Preoperative assessment of the liver volume and function of the remnant liver is a mandatory prerequisite before performing major hepatectomy. The aim of this work is to develop and test a software application for evaluation of the residual function of the liver prior to the intervention of the surgeons. For this purpose, a complete software platform consisting of three basic modules: liver volume segmentation, visualization, and virtual cutting, was developed and tested. Liver volume segmentation is based on a patient examination with non-contrast abdominal Computed Tomography (CT). The basis of the segmentation is a multiple seeded region growing algorithm adapted for use with CT images without contrast-enhancement. Virtual tumor resection is performed interactively by outlining the liver region on the CT images. The software application then processes the results to produce a three-dimensional (3D) image of the “resected” region. Finally, 3D rendering module provides possibility for easy and fast interpretation of the segmentation results. The visual outputs are accompanied with quantitative measures that further provide estimation of the residual liver function and based on them the surgeons could make a better decision. The developed system was tested and verified with twenty abdominal CT patient sets consisting of different numbers of tomographic images. Volumes, obtained by manual tracing of two surgeon experts, showed a mean relative difference of 4.5%. The application was used in a study that demonstrates the need and the added value of such a tool in practice and in education.
基金funded by the Project of the National Natural Science Foundation of China,Grant Number 62106283.
文摘Aiming at the problems of traditional dynamic weapon-target assignment algorithms in command decisionmaking,such as large computational amount,slow solution speed,and low calculation accuracy,combined with deep reinforcement learning theory,an improved Deep Deterministic Policy Gradient algorithm with dual noise and prioritized experience replay is proposed,which uses a double noise mechanism to expand the search range of the action,and introduces a priority experience playback mechanism to effectively achieve data utilization.Finally,the algorithm is simulated and validated on the ground-to-air countermeasures digital battlefield.The results of the experiment show that,under the framework of the deep neural network for intelligent weapon-target assignment proposed in this paper,compared to the traditional RELU algorithm,the agent trained with reinforcement learning algorithms,such asDeepDeterministic Policy Gradient algorithm,Asynchronous Advantage Actor-Critic algorithm,Deep Q Network algorithm performs better.It shows that the use of deep reinforcement learning algorithms to solve the weapon-target assignment problem in the field of air defense operations is scientific.In contrast to other reinforcement learning algorithms,the agent trained by the improved Deep Deterministic Policy Gradient algorithm has a higher win rate and reward in confrontation,and the use of weapon resources is more efficient.It shows that the model and algorithm have certain superiority and rationality.The results of this paper provide new ideas for solving the problemof weapon-target assignment in air defense combat command decisions.
文摘Information about the relative importance of each criterion or theweights of criteria can have a significant influence on the ultimate rank of alternatives.Accordingly,assessing the weights of criteria is a very important task in solving multi-criteria decision-making problems.Three methods are commonly used for assessing the weights of criteria:objective,subjective,and integrated methods.In this study,an objective approach is proposed to assess the weights of criteria,called SPCmethod(Symmetry Point of Criterion).This point enriches the criterion so that it is balanced and easy to implement in the process of the evaluation of its influence on decision-making.The SPC methodology is systematically presented and supported by detailed calculations related to an artificial example.To validate the developed method,we used our numerical example and calculated the weights of criteria by CRITIC,Entropy,Standard Deviation and MEREC methods.Comparative analysis between these methods and the SPC method reveals that the developedmethod is a very reliable objective way to determine the weights of criteria.Additionally,in this study,we proposed the application of SPCmethod to evaluate the efficiency of themulti-criteria partitioning algorithm.The main idea of the evaluation is based on the following fact:the greater the uniformity of the weights of criteria,the higher the efficiency of the partitioning algorithm.The research demonstrates that the SPC method can be applied to solving different multi-criteria problems.
文摘Given the challenge of estimating or calculating quantities of waste electrical and electronic equipment(WEEE)in developing countries,this article focuses on predicting the WEEE generated by Cameroonian small and medium enterprises(SMEs)that are engaged in ISO 14001:2015 initiatives and consume electrical and electronic equipment(EEE)to enhance their performance and profitability.The methodology employed an exploratory approach involving the application of general equilibrium theory(GET)to contextualize the study and generate relevant parameters for deploying the random forest regression learning algorithm for predictions.Machine learning was applied to 80%of the samples for training,while simulation was conducted on the remaining 20%of samples based on quantities of EEE utilized over a specific period,utilization rates,repair rates,and average lifespans.The results demonstrate that the model’s predicted values are significantly close to the actual quantities of generated WEEE,and the model’s performance was evaluated using the mean squared error(MSE)and yielding satisfactory results.Based on this model,both companies and stakeholders can set realistic objectives for managing companies’WEEE,fostering sustainable socio-environmental practices.
文摘This paper delves into the intricate interplay between artificial intelligence(AI)systems and the perpetuation of Anti-Black racism within the United States medical industry.Despite the promising potential of AI to enhance healthcare outcomes and reduce disparities,there is a growing concern that these technologies may inadvertently/advertently exacerbate existing racial inequalities.Focusing specifically on the experiences of Black patients,this research investigates how the following AI components:medical algorithms,machine learning,and natural learning processes are contributing to the unequal distribution of medical resources,diagnosis,and health care treatment of those classified as Black.Furthermore,this review employs a multidisciplinary approach,combining insights from computer science,medical ethics,and social justice theory to analyze the mechanisms through which AI systems may encode and reinforce racial biases.By dissecting the three primary components of AI,this paper aims to present a clear understanding of how these technologies work,how they intersect,and how they may inherently perpetuate harmful stereotypes resulting in negligent outcomes for Black patients.Furthermore,this paper explores the ethical implications of deploying AI in healthcare settings and calls for increased transparency,accountability,and diversity in the development and implementation of these technologies.Finally,it is important that I prefer the following paper with a clear and concise definition of what I refer to as Anti-Black racism throughout the text.Therefore,I assert the following:Anti-Black racism refers to prejudice,discrimination,or antagonism directed against individuals or communities of African descent based on their race.It involves the belief in the inherent superiority of one race over another and the systemic and institutional practices that perpetuate inequality and disadvantage for Black people.Furthermore,I proclaim that this form of racism can be manifested in various ways,such as unequal access to opportunities,resources,education,employment,and fair treatment within social,economic,and political systems.It is also pertinent to acknowledge that Anti-Black racism is deeply rooted in historical and societal structures throughout the U.S.borders and beyond,leading to systemic disadvantages and disparities that impact the well-being and life chances of Black individuals and communities.Addressing Anti-Black racism involves recognizing and challenging both individual attitudes and systemic structures that contribute to discrimination and inequality.Efforts to combat Anti-Black racism include promoting awareness,education,advocacy for policy changes,and fostering a culture of inclusivity and equality.
基金supported by the National Natural Science Foundation of China (No.70702030)the National Under-graduate Innovation Experimental Project of China (No.610762)
文摘An online algorithm balancing the efficiency and equity principles is proposed for the kidney resource assignment when only the current patient and resource information is known to the assignment network. In the algorithm, the assignment is made according to the priority, which is calculated according to the efficiency principle and the equity principle. The efficiency principle is concerned with the post-transplantation immunity spending caused by the possible post-operation immunity rejection and patient’s mental depression due to the HLA mismatch. The equity principle is concerned with three other factors, namely the treatment spending incurred starting from the day of registering with the kidney assignment network, the post-operation immunity spending and the negative effects of waiting for kidney resources on the clinical efficiency. The competitive analysis conducted through computer simulation indicates that the efficiency competitive ratio is between 6.29 and 10.43 and the equity competitive ratio is between 1.31 and 5.21, demonstrating that the online algorithm is of great significance in application.