Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,...Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.展开更多
In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke...In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke-preventing air curtain. The rationality and the feasibility of the air curtain are theoretically expounded. The air volume, tuyere width and jet velocity in the air curtain experiment are designed according to the theoreti- cal calculation model. Experimental results indicate that the effect of air curtain to prevent smoke diffusion is re- markable as the volume ratio of air-smoke is about 0. 6, the jet angle is between 25^o and 35^o, and the jet thickness is between 25 mm and 45 mm. The efficiency of air curtain can reach 98% on the entraining effect. Meanwhile, experiments verify the theorectical calculation.展开更多
In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Inve...In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Investigations into the development of new methods of fire hazard prediction and implementation of new methods and means of fire prevention as well as the introduction of prohibition concerning the use of products manufactured of combustible organic materials in underground mine workings re-duced considerably the hazard of underground fire rise. The worked out at the Central Mining Institute (GIG) new method of un-derground fire prediction allows the correct selection of fire prevention means. The introduction into common use of fire-resistant conveyor belts, the main factor giving rise to spontaneous fires, and methods of assessment of their fire resistance eliminated prac-tically the fire hazard. These activities contributed in an efficient way to the reduction of the number of underground fires to a sat-isfactory level.展开更多
This study presents an analysis of the impact of forest fires in Puerto Rico for the period from 2013-2014. The climatological factors analyzed included precipitation, temperature, relative humidity, and wind. Several...This study presents an analysis of the impact of forest fires in Puerto Rico for the period from 2013-2014. The climatological factors analyzed included precipitation, temperature, relative humidity, and wind. Several factors have combined to the increase of these forest fires, among others, a decrease in precipitation during this period, as well as an increase in the human involvement in these fires from approximately 40% occurs in the night period (5:00 pm to 8:00 am), where the weather conditions do not favor the appearance of these phenomena. An increase in fires of 44% occurred in 2013 compared to 2014, causing an economic loss of $13.8 million. Fire also adversely affected the flora and fauna of the island, but this was not evaluated in this paper.展开更多
Mt. Qomolangma (also known as Mt. Everest), the world's highest mountain, is situated over the world's highest plateau, the Tibetan Plateau. Because of its height and because of its distance from industrialized a...Mt. Qomolangma (also known as Mt. Everest), the world's highest mountain, is situated over the world's highest plateau, the Tibetan Plateau. Because of its height and because of its distance from industrialized areas, the environmental state of the Mt. Qonlolangma region can normally be considered 'undisturbed'. It is interesting to investigate how this “undisturbed” state has been changing with time and whether it has been influenced by large environmentally disruptive events such as the Kuwait oil fires of 1990 and 1991 (Small, 1991). In order to do this, river water samples were collected from the Rongpu River at Rongpu Temple Station in the summers of 1992 and 1993,as was done in 1975, and aerosol samples were collected in the summer of 1992 at the same station as was done in 1980. River water samples were analyzed using atomic absorption spectroscopy (AAS) at the Chinese Academy of Sciences. Aerosol samples were analyzed using proton-induced x-ray emission (PIXE) at the University of Fudan in Shanghai. The results show that the concentrations of chemical species in the river water at Rongpu Temple Station were much higher in the summer of 1992 than they were in 1975 and 1993, and the concentrations of atmospheric chemical species were much higher in 1992 than they were in 1980. The environment of the north slope of Mt.Qomolangma was therefore heavily polluted before and / or during the summer of 1992, possibly due to the Kuwait oil fires in 1990 and 1991.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natur...Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.展开更多
Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire act...Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005–2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index(SPEI). A total of 47975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico(Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.展开更多
The fire behaviour involving multiple fires in a mine drift with longitudinal ventilation was analysed. The conditions and fire phenomena occurring were described. The analysis was based upon experimental data from mo...The fire behaviour involving multiple fires in a mine drift with longitudinal ventilation was analysed. The conditions and fire phenomena occurring were described. The analysis was based upon experimental data from model-scale fire experiments. A fire involving several fuel items may lead to flames tilted horizontally and filling up the entire cross section, leading to earlier ignition, higher fire growth rates, higher fire spread rate and severe fire behaviour. Longer flame lengths will also result due to decreased air entrainment. A correlation for the continuous flame length was proposed. The results of the analysis will help identifying and preventing potentially dangerous fire situations with several large combustible items distributed along a mine drift.展开更多
Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and ma...Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and many fires occur in the area every year.However,there are few models for estimation of carbon emissions from grassland fires.Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon.In this study,the regression equations for aboveground biomass(AGB)of grassland in growing season and MODIS NDVI(Normalized Difference Vegetation Index)were established through field experiments,then AGB during Nov.–Apr.were retrieved based on that in Oct.and decline rate,finally surface fuel load was obtained for whole year.Based on controlled combustion experiments of different grassland types in Inner Mongolia,the carbon emission rate of grassland fires for each grassland type were determined,then carbon emission was estimated using proposed method and carbon emission rate.Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000–2016 was approximately 1.1978×1012 kg.The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2,with the annual average area of 311.69 km2.The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia.The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area.The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner.The spatial characteristics of carbon emission depend on the location of grassland fire,mainly in the northeast of Inner Mongolia include Hulunbuir City,Hinggan League,Xilin Gol League and Ulanqab City.The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions.This study provides a reference for estimating carbon emissions from steppe fires.The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.展开更多
The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the la...The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.展开更多
Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distin-guished. They mainly locate in West-North of China, No...Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distin-guished. They mainly locate in West-North of China, North of China and East-North of China. About millions of tons of coal have been burned in fires every year. Xinjiang Autonomy is the most serious region in coal fires as it has 38 coal fires spots and about 6.85 million tons of coal was burned every year. Coal fires in China ignited by wildfires, spontaneous combustion and human being during mining activities. These fires have re-leased about 0.9 million tons of gasses (including CO, CO2, SO2, NO2 CH4, CO2, H2S etc.) into the atmosphere every year, most of which are brought to the east by wind and result-ing more heavier air pollution in northern China.展开更多
The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments ...The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments in soil profiles affected by shallow landsliding enabled us to date the occurrence of fires and the periods of conversion ofsubalpine forest into grasslands in the Urbión Mountains, Iberian Range, Spain. We found that the treeline in the highest parts of the northwestern massifs of the Iberian Range(the Urbión, Demanda, Neila, and Cebollera massifs) is currently between 1500 and 1600 m a.s.l., probably because of pastoral use of the subalpine belt, whereas in the past it would have reached almost the highest divides(at approximately 2100–2200 m a.s.l.). The radiocarbon dates obtained indicate that the transformation of the subalpine belt occurred during the Late Neolithic, Chalcolithic, Bronze Age, Iron Age, and Middle Ages. Forest clearing was probably moderate during fires prior to the Middle Ages, as the small size of the sheep herds and the local character of the markets only required small clearings, and therefore more limited fires. Thus, it is likely that the forest recovered burnt areas in a few decades; this suggests the management of the forest and grasslands following a slash-andburn system. During the Middle and Modern Ages deforestation and grassland expansion affected most of the subalpine belt and coincided with the increasing prevalence of transhumance, as occurred in other mountains in the Iberian Peninsula(particularly the Pyrenees). Although the occurrence of shallow landslides following deforestation between the Neolithic and the Roman Period cannot be ruled out, the most extensive shallow landsliding processes would have occurred from the Middle Ages until recent times.展开更多
Forest fires are one of the most important threats for forests in the State of Mexico. Therefore, understanding their geographical patterns is a priority for the design of forest management strategies. We processed th...Forest fires are one of the most important threats for forests in the State of Mexico. Therefore, understanding their geographical patterns is a priority for the design of forest management strategies. We processed the records obtained with the MOD14A2 product (for thermal anomalies and fire) of MODIS sensor. Such scenes correspond to dry seasons (from March 15 to June 30) from 2000 to 2012 in the State of Mexico. We analyzed such records in a GIS environment to learn their spatial patterns and establish their geographical correlations as a first step to understand the causal agents of forest fires. As a result, forest fires in the State of Mexico showed a clustered spatial trend with a southwest tendency and a slight spatial relation with total winter precipitation and maximal temperature in summer.展开更多
Forest fires are one of the commonest natural hazards. Forest fires make the largest contribution to CO2 emissions after the burning of fossil fuels. Here a new technology is proposed to extinguish forest fires not wi...Forest fires are one of the commonest natural hazards. Forest fires make the largest contribution to CO2 emissions after the burning of fossil fuels. Here a new technology is proposed to extinguish forest fires not with water, but with a slurry of serpentine. Serpentinites are abundantly available in many countries on every continent. If serpentine is calcined, it weathers very fast and captures CO2. Calcination, however, requires a lot of heat, which makes it counterproductive to produce calcined serpentine for CO2 capture. In cases, however, where heat is the problem, like in forest fires, one can extinguish them to greater advantage by using serpentinite slurries instead of plain water. The calcined residue that is left as a thin cake on the burning material prevents oxygen to reach the burning material. It also prevents the escape of inflammable gases, and the calcination itself withdraws large quantities of heat from the fire. After the fire is extinguished, the calcined material in contact with the atmosphere will rapidly weather and capture CO2. This compensates part of the CO2 that is produced by the fire. In tests, where the efficacy of quenching fires with serpentine slurries was compared to the effect of water, it turned out that serpentinite slurries performed far better.展开更多
The forests of the State of Durango have been severely affected by fires in recent years. Early detection of fires through watchtowers is essential. In this work a geospatial model was generated to optimize strategic ...The forests of the State of Durango have been severely affected by fires in recent years. Early detection of fires through watchtowers is essential. In this work a geospatial model was generated to optimize strategic visualization points, using a GIS environment. Analysis of the area of visibility was developed by integrating a digital model of elevation and a plant cover map. The resulting distribution generates more than 50% coverage of the studied area, in points that were not always the highest. It was concluded that this strategy would permit to increase the efficiency, mainly favoring the communities of pine, whose economic importance would justify the required investment.展开更多
Rhodes is one of the most forested islands of Greece, in the Prefecture of Dodecanese, in southeast of Aegean Sea. The island in recent times has been struck by big and devastating fires. After 1993, the local Forest ...Rhodes is one of the most forested islands of Greece, in the Prefecture of Dodecanese, in southeast of Aegean Sea. The island in recent times has been struck by big and devastating fires. After 1993, the local Forest Service and the local political authority have adopted a new prevention and suppression system relied on the fast fire detection and suppression at its initial stages. By the present research, comparing the results of 1993-2006 (a time span when the above method was applied) with the results of the immediately precedent equal time of 1978-1992, was made certain that the firefighting system applied after 1993 had very good results irrespective from the primary agency in charge of extinguishing the forest fires. Among others, it was made clear that, during the period that this method was applied, a much less area was burnt per year than the period before the application in spite of the fact that in the same period (1993-2006) there has been a significant increase of forest fires. It is also estimated that the economic damage occurred in the first period (1978-1992) on average was 12.4 times per year higher compared to the second period (1993-2006).展开更多
UK scientists say the recent fires in Australia are a taste of what the world will experience as temperatures rise.Prof Richard Betts from the Met Office Hadley Centre said we are"seeing a sign of what would be n...UK scientists say the recent fires in Australia are a taste of what the world will experience as temperatures rise.Prof Richard Betts from the Met Office Hadley Centre said we are"seeing a sign of what would be normal conditions under a future warming world of 3C".展开更多
基金financially supported by the National Natural Science Fundation of China(Grant Nos.42161065 and 41461038)。
文摘Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.
文摘In high-rise building fires, the most immediate threat to passenger life and safety evacuation is the smoke inhalation. Some traditional models for smoke prevention and exhaust are analyzed and compared with the smoke-preventing air curtain. The rationality and the feasibility of the air curtain are theoretically expounded. The air volume, tuyere width and jet velocity in the air curtain experiment are designed according to the theoreti- cal calculation model. Experimental results indicate that the effect of air curtain to prevent smoke diffusion is re- markable as the volume ratio of air-smoke is about 0. 6, the jet angle is between 25^o and 35^o, and the jet thickness is between 25 mm and 45 mm. The efficiency of air curtain can reach 98% on the entraining effect. Meanwhile, experiments verify the theorectical calculation.
文摘In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Investigations into the development of new methods of fire hazard prediction and implementation of new methods and means of fire prevention as well as the introduction of prohibition concerning the use of products manufactured of combustible organic materials in underground mine workings re-duced considerably the hazard of underground fire rise. The worked out at the Central Mining Institute (GIG) new method of un-derground fire prediction allows the correct selection of fire prevention means. The introduction into common use of fire-resistant conveyor belts, the main factor giving rise to spontaneous fires, and methods of assessment of their fire resistance eliminated prac-tically the fire hazard. These activities contributed in an efficient way to the reduction of the number of underground fires to a sat-isfactory level.
文摘This study presents an analysis of the impact of forest fires in Puerto Rico for the period from 2013-2014. The climatological factors analyzed included precipitation, temperature, relative humidity, and wind. Several factors have combined to the increase of these forest fires, among others, a decrease in precipitation during this period, as well as an increase in the human involvement in these fires from approximately 40% occurs in the night period (5:00 pm to 8:00 am), where the weather conditions do not favor the appearance of these phenomena. An increase in fires of 44% occurred in 2013 compared to 2014, causing an economic loss of $13.8 million. Fire also adversely affected the flora and fauna of the island, but this was not evaluated in this paper.
文摘Mt. Qomolangma (also known as Mt. Everest), the world's highest mountain, is situated over the world's highest plateau, the Tibetan Plateau. Because of its height and because of its distance from industrialized areas, the environmental state of the Mt. Qonlolangma region can normally be considered 'undisturbed'. It is interesting to investigate how this “undisturbed” state has been changing with time and whether it has been influenced by large environmentally disruptive events such as the Kuwait oil fires of 1990 and 1991 (Small, 1991). In order to do this, river water samples were collected from the Rongpu River at Rongpu Temple Station in the summers of 1992 and 1993,as was done in 1975, and aerosol samples were collected in the summer of 1992 at the same station as was done in 1980. River water samples were analyzed using atomic absorption spectroscopy (AAS) at the Chinese Academy of Sciences. Aerosol samples were analyzed using proton-induced x-ray emission (PIXE) at the University of Fudan in Shanghai. The results show that the concentrations of chemical species in the river water at Rongpu Temple Station were much higher in the summer of 1992 than they were in 1975 and 1993, and the concentrations of atmospheric chemical species were much higher in 1992 than they were in 1980. The environment of the north slope of Mt.Qomolangma was therefore heavily polluted before and / or during the summer of 1992, possibly due to the Kuwait oil fires in 1990 and 1991.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金co-financed by the European Union(European Social Fund-ESF)and Greek national funds through the Operational Program‘‘Education and Lifelong Learning’’of the National Strategic Reference Framework(NSRF)-Research Funding Program:Thales.Investing in knowledge society through the European Social Fund
文摘Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.
基金Under the auspices of Universidad Juárez del Estado de Durango,Project PRODEP 2017(No.120418)
文摘Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005–2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index(SPEI). A total of 47975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico(Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.
文摘The fire behaviour involving multiple fires in a mine drift with longitudinal ventilation was analysed. The conditions and fire phenomena occurring were described. The analysis was based upon experimental data from model-scale fire experiments. A fire involving several fuel items may lead to flames tilted horizontally and filling up the entire cross section, leading to earlier ignition, higher fire growth rates, higher fire spread rate and severe fire behaviour. Longer flame lengths will also result due to decreased air entrainment. A correlation for the continuous flame length was proposed. The results of the analysis will help identifying and preventing potentially dangerous fire situations with several large combustible items distributed along a mine drift.
基金Under the auspices of National Natural Science Foundation of China (No. 4176110141771450+2 种基金41871330)National Natural Science Foundation of Inner Mongolia (No. 2017MS0409)Fundamental Research Funds for the Central Universities (No. 2412019BJ001)
文摘Grassland fires results in carbon emissions,which directly affects the carbon cycle of ecosystems and the carbon balance.The grassland area of Inner Mongolia accounts for 22%of the total grassland area in China,and many fires occur in the area every year.However,there are few models for estimation of carbon emissions from grassland fires.Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon.In this study,the regression equations for aboveground biomass(AGB)of grassland in growing season and MODIS NDVI(Normalized Difference Vegetation Index)were established through field experiments,then AGB during Nov.–Apr.were retrieved based on that in Oct.and decline rate,finally surface fuel load was obtained for whole year.Based on controlled combustion experiments of different grassland types in Inner Mongolia,the carbon emission rate of grassland fires for each grassland type were determined,then carbon emission was estimated using proposed method and carbon emission rate.Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000–2016 was approximately 1.1978×1012 kg.The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2,with the annual average area of 311.69 km2.The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia.The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area.The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner.The spatial characteristics of carbon emission depend on the location of grassland fire,mainly in the northeast of Inner Mongolia include Hulunbuir City,Hinggan League,Xilin Gol League and Ulanqab City.The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions.This study provides a reference for estimating carbon emissions from steppe fires.The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.
基金National Natural Science Foundation of China (51274205), the Doctoral Program Foundation of Ministry of Education the New Teacher Project (20070290022) and the Open Project of China University of Mining and Technology Resources and Mine Safety State Key Laboratory (S KLCRSM 10KFB 13).
文摘The objective of this work is to investigate the influence of smoke movement during mine fires on miner evacuation behaviors. A three-dimensional computational fluid dynamics method was conducted to reconstruct the lane- way conveyor belt fire scenes under two ventilating conditions. The parameters, including temperature-time histories, soot density, carbon monoxide and heat release rate, were simulated to characterize the mine fires at various ventilating speeds. A miner evacuation model affected by fire smoke movement was advanced to describe the miner evacuation behaviors, which can be divided into three stages. Based on the evacuation model coupled with the mine fire smoke movement, the available safety evacuation time for miners involved in coal mine fire located in different sites was estimated. Two evacuation patterns were advanced according to the ventilating speeds combined with the model of miner evacuation behaviors. The results show that the miners located between the inlet-air end and the air door in lane 1 should be evacuated to the inlet-air end and other miners involved in coal mine fire could choose the air door as the escaping destination, when the ventilation speed is greater than 3 m/s. Accordingly, the research can be used as references for the mine safety administration authorities to design the safety evacuation.
基金Supported by National Natural Science Foundation of China (40272124)
文摘Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distin-guished. They mainly locate in West-North of China, North of China and East-North of China. About millions of tons of coal have been burned in fires every year. Xinjiang Autonomy is the most serious region in coal fires as it has 38 coal fires spots and about 6.85 million tons of coal was burned every year. Coal fires in China ignited by wildfires, spontaneous combustion and human being during mining activities. These fires have re-leased about 0.9 million tons of gasses (including CO, CO2, SO2, NO2 CH4, CO2, H2S etc.) into the atmosphere every year, most of which are brought to the east by wind and result-ing more heavier air pollution in northern China.
基金the projects INDICA(CGL2011-27753-C02-01 and-02)DINAMO2(CGL2012-33063)funded by the Spanish Ministry of Economy and Competitiveness
文摘The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments in soil profiles affected by shallow landsliding enabled us to date the occurrence of fires and the periods of conversion ofsubalpine forest into grasslands in the Urbión Mountains, Iberian Range, Spain. We found that the treeline in the highest parts of the northwestern massifs of the Iberian Range(the Urbión, Demanda, Neila, and Cebollera massifs) is currently between 1500 and 1600 m a.s.l., probably because of pastoral use of the subalpine belt, whereas in the past it would have reached almost the highest divides(at approximately 2100–2200 m a.s.l.). The radiocarbon dates obtained indicate that the transformation of the subalpine belt occurred during the Late Neolithic, Chalcolithic, Bronze Age, Iron Age, and Middle Ages. Forest clearing was probably moderate during fires prior to the Middle Ages, as the small size of the sheep herds and the local character of the markets only required small clearings, and therefore more limited fires. Thus, it is likely that the forest recovered burnt areas in a few decades; this suggests the management of the forest and grasslands following a slash-andburn system. During the Middle and Modern Ages deforestation and grassland expansion affected most of the subalpine belt and coincided with the increasing prevalence of transhumance, as occurred in other mountains in the Iberian Peninsula(particularly the Pyrenees). Although the occurrence of shallow landslides following deforestation between the Neolithic and the Roman Period cannot be ruled out, the most extensive shallow landsliding processes would have occurred from the Middle Ages until recent times.
文摘Forest fires are one of the most important threats for forests in the State of Mexico. Therefore, understanding their geographical patterns is a priority for the design of forest management strategies. We processed the records obtained with the MOD14A2 product (for thermal anomalies and fire) of MODIS sensor. Such scenes correspond to dry seasons (from March 15 to June 30) from 2000 to 2012 in the State of Mexico. We analyzed such records in a GIS environment to learn their spatial patterns and establish their geographical correlations as a first step to understand the causal agents of forest fires. As a result, forest fires in the State of Mexico showed a clustered spatial trend with a southwest tendency and a slight spatial relation with total winter precipitation and maximal temperature in summer.
文摘Forest fires are one of the commonest natural hazards. Forest fires make the largest contribution to CO2 emissions after the burning of fossil fuels. Here a new technology is proposed to extinguish forest fires not with water, but with a slurry of serpentine. Serpentinites are abundantly available in many countries on every continent. If serpentine is calcined, it weathers very fast and captures CO2. Calcination, however, requires a lot of heat, which makes it counterproductive to produce calcined serpentine for CO2 capture. In cases, however, where heat is the problem, like in forest fires, one can extinguish them to greater advantage by using serpentinite slurries instead of plain water. The calcined residue that is left as a thin cake on the burning material prevents oxygen to reach the burning material. It also prevents the escape of inflammable gases, and the calcination itself withdraws large quantities of heat from the fire. After the fire is extinguished, the calcined material in contact with the atmosphere will rapidly weather and capture CO2. This compensates part of the CO2 that is produced by the fire. In tests, where the efficacy of quenching fires with serpentine slurries was compared to the effect of water, it turned out that serpentinite slurries performed far better.
文摘The forests of the State of Durango have been severely affected by fires in recent years. Early detection of fires through watchtowers is essential. In this work a geospatial model was generated to optimize strategic visualization points, using a GIS environment. Analysis of the area of visibility was developed by integrating a digital model of elevation and a plant cover map. The resulting distribution generates more than 50% coverage of the studied area, in points that were not always the highest. It was concluded that this strategy would permit to increase the efficiency, mainly favoring the communities of pine, whose economic importance would justify the required investment.
文摘Rhodes is one of the most forested islands of Greece, in the Prefecture of Dodecanese, in southeast of Aegean Sea. The island in recent times has been struck by big and devastating fires. After 1993, the local Forest Service and the local political authority have adopted a new prevention and suppression system relied on the fast fire detection and suppression at its initial stages. By the present research, comparing the results of 1993-2006 (a time span when the above method was applied) with the results of the immediately precedent equal time of 1978-1992, was made certain that the firefighting system applied after 1993 had very good results irrespective from the primary agency in charge of extinguishing the forest fires. Among others, it was made clear that, during the period that this method was applied, a much less area was burnt per year than the period before the application in spite of the fact that in the same period (1993-2006) there has been a significant increase of forest fires. It is also estimated that the economic damage occurred in the first period (1978-1992) on average was 12.4 times per year higher compared to the second period (1993-2006).
文摘UK scientists say the recent fires in Australia are a taste of what the world will experience as temperatures rise.Prof Richard Betts from the Met Office Hadley Centre said we are"seeing a sign of what would be normal conditions under a future warming world of 3C".