Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS response...Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization.展开更多
Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavio...Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.展开更多
The exciton dynamics in a WS2 monolayer with strain are studied by transient absorption measurements.We measure the differential transmission signal from monolayer WS2 as a function of the probe wavelength at differen...The exciton dynamics in a WS2 monolayer with strain are studied by transient absorption measurements.We measure the differential transmission signal from monolayer WS2 as a function of the probe wavelength at different levels of strain applied to the sample.The differential transmission spectrum has a positive maximum value at about 614 nm and shows no significant strain dependence.By time-resolving the differential transmission signal,we find that the strain has a minimal effect on the exciton formation process.However,the exciton lifetime is significantly reduced by strain.These results provide useful information for applications of WS2 in flexible electronic and optoelectronic devices where strain is inevitable.展开更多
This paper presents a fringe-carrier method that eliminates sign ambiguity of transient moire fringes which can be used to automatically determine the relative orders. A fringe carrier is preset in the static state of...This paper presents a fringe-carrier method that eliminates sign ambiguity of transient moire fringes which can be used to automatically determine the relative orders. A fringe carrier is preset in the static state of the specimen and the dynamic in-plane displacements are recorded as the modulation to the frequency of the carrier fringes when the specimen is loaded by impact. According to a modulating criterion developed from the modulation degree, the fringes of the transient moire patterns keep monotonical in orders so that they can be automatically encoded in grey levels by a digital image system. The moire orders purely caused by dynamic loadings are evaluated by subtracting the grey-value of the unmodulated carrier image from that of the modulated carrier images encoded by their orders. With the subtracted moire orders the strain components can be obtained, and, correspondingly, the histograms of dynamic displacement moire images are shown with order variation by image-difference.展开更多
Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on s...Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on several types of soft materials under the condition of a flat frontal impact. The impact force waveform of soft materials was found to consist of a thorn-shaped waveform and a succeeding mountain-shaped waveform. Based on our experimental observations, we believe that a large viscosity resistance is rapidly changed to a small resistance in the course of the impact. In the present study, the cause of this distinct waveform is discussed based on a dynamics model. The study applies a standard linear solid (SLS) model in which the viscosity transient phenomenon is considered is applied. Three types of impact force waveforms of actual soft materials are simulated using the SLS model. Some features of the impact force waveform of soft materials can be explained using the SLS model.展开更多
The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. ...The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. The experimental results indicated that the impact force waveforms of soft materials consisted of a thorn-shaped waveform and a subsequent mountain-shaped waveform. The thorn-shaped waveform was strongly affected by the strain rate. In the present study, the occurrence mechanism of this distinctive waveform was discussed from the viewpoint of the viscosity transient phenomenon. A standard linear solid (SLS) model in which the viscosity transient phenomenon was considered was applied to the simulation. Some features of the impact force waveform of soft materials could be explained by the SLS model. Furthermore, the thorn-shape waveform could also be observed in the impact force waveforms of human skin and free-falling hollow balls.展开更多
基金funding support from the National Natural Science Foundation of China(Grant No.52204030)Youth Innovation and Technology Support Program for Higher Education Institutions of Shandong Province,China(Grant No.2022KJ070)the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund Project(Grant No.U19B6003).
文摘Fiber-optic distributed strain sensing(FO-DSS)has been successful in monitoring strain changes along horizontal wellbores in hydraulically fractured reservoirs.However,the mechanism driving the various FO-DSS responses associated with near-wellbore hydraulic fracture properties is still unclear.To address this knowledge gap,we use coupled wellbore-reservoir-geomechanics simulations to study measured strain-change behavior and infer hydraulic fracture characteristics.The crossflow among fractures is captured through explicit modeling of the transient wellbore flow.In addition,local grid refinement is applied to accurately capture strain changes along the fiber.A Base Case model was designed with four fractures of varying properties,simulating strain change signals when the production well is shut-in for 10 d after 240 d of production and reopened for 2 d.Strain-pressure plots for different fracture clusters were used to gain insights into inferring fracture properties using DSS data.When comparing the model with and without the wellbore,distinct strain change signals were observed,emphasizing the importance of incorporating the wellbore in FO-DSS modeling.The effects of fracture spacing and matrix permeability on strain change signals were thoroughly investigated.The results of our numerical study can improve the understanding of the relation between DSS signals and fracture hydraulic properties,thus maximizing the value of the dataset for fracture diagnostics and characterization.
基金Project(12JCYBJC32100)supported by Tianjin Research Program of Application Foundation and Advanced Technologyin part by Grants-in-Aid from the Japan Society for the Promotion of Science(JSPS)
文摘Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0202302)the National Natural Science Foundation of China(Grant Nos.61527817 and 61875236)+3 种基金the Initiative Postdocs Supporting Program of China(Grant No.BX201600013)the General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2017M610756)the Overseas Expertise Introduction Center for Discipline Innovation,Chinathe 111 Center of China
文摘The exciton dynamics in a WS2 monolayer with strain are studied by transient absorption measurements.We measure the differential transmission signal from monolayer WS2 as a function of the probe wavelength at different levels of strain applied to the sample.The differential transmission spectrum has a positive maximum value at about 614 nm and shows no significant strain dependence.By time-resolving the differential transmission signal,we find that the strain has a minimal effect on the exciton formation process.However,the exciton lifetime is significantly reduced by strain.These results provide useful information for applications of WS2 in flexible electronic and optoelectronic devices where strain is inevitable.
基金The project supported by Alexander von Humboldt Foundation or Germany and the National Natural Science Foundation of China
文摘This paper presents a fringe-carrier method that eliminates sign ambiguity of transient moire fringes which can be used to automatically determine the relative orders. A fringe carrier is preset in the static state of the specimen and the dynamic in-plane displacements are recorded as the modulation to the frequency of the carrier fringes when the specimen is loaded by impact. According to a modulating criterion developed from the modulation degree, the fringes of the transient moire patterns keep monotonical in orders so that they can be automatically encoded in grey levels by a digital image system. The moire orders purely caused by dynamic loadings are evaluated by subtracting the grey-value of the unmodulated carrier image from that of the modulated carrier images encoded by their orders. With the subtracted moire orders the strain components can be obtained, and, correspondingly, the histograms of dynamic displacement moire images are shown with order variation by image-difference.
文摘Most soft materials behave as if they were hardened when subjected to an impact force. The strain rate dependence of viscosity resistance is the reason for this behavior. The authors carried out drop impact tests on several types of soft materials under the condition of a flat frontal impact. The impact force waveform of soft materials was found to consist of a thorn-shaped waveform and a succeeding mountain-shaped waveform. Based on our experimental observations, we believe that a large viscosity resistance is rapidly changed to a small resistance in the course of the impact. In the present study, the cause of this distinct waveform is discussed based on a dynamics model. The study applies a standard linear solid (SLS) model in which the viscosity transient phenomenon is considered is applied. Three types of impact force waveforms of actual soft materials are simulated using the SLS model. Some features of the impact force waveform of soft materials can be explained using the SLS model.
文摘The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. The experimental results indicated that the impact force waveforms of soft materials consisted of a thorn-shaped waveform and a subsequent mountain-shaped waveform. The thorn-shaped waveform was strongly affected by the strain rate. In the present study, the occurrence mechanism of this distinctive waveform was discussed from the viewpoint of the viscosity transient phenomenon. A standard linear solid (SLS) model in which the viscosity transient phenomenon was considered was applied to the simulation. Some features of the impact force waveform of soft materials could be explained by the SLS model. Furthermore, the thorn-shape waveform could also be observed in the impact force waveforms of human skin and free-falling hollow balls.