The motion of a lazy Pearson walker is studied with different probability (p) of jump in two and three dimensions. The probability of exit ( ) from a zone of radius is studied as a function of with d...The motion of a lazy Pearson walker is studied with different probability (p) of jump in two and three dimensions. The probability of exit ( ) from a zone of radius is studied as a function of with different values of jump probability p. The exit probability is found to scale as , which is obtained by method of data collapse. The first passage time ( ) i.e., the time required for first exit from a zone is studied. The probability distribution of first passage time was studied for different values of jump probability (p). The probability distribution of first passage time was found to scale as . Where, F and G are two scaling functions and a, b, g and d are some exponents. In both the dimensions, it is found that, , , and .展开更多
In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and driv...In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and drive the joint distribution of the first exit time from an interval and the overshoot over the boundary at the exit time.展开更多
Residence time in a flow measurement of radioactivity is the time spent by a pre-determined quantity of radioactive sample in the flow cell. In a recent report of the measurement of indoor radon by passive diffusion i...Residence time in a flow measurement of radioactivity is the time spent by a pre-determined quantity of radioactive sample in the flow cell. In a recent report of the measurement of indoor radon by passive diffusion in an open volume (i.e. no flow cell or control volume), the concept of residence time was generalized to apply to measurement conditions with random, rather than directed, flow. The generalization, leading to a quantity Δtr, involved use of a) a phenomenological alpha-particle range function to calculate the effective detection volume, and b) a phenomenological description of diffusion by Fick’s law to determine the effective flow velocity. This paper examines the residence time in passive diffusion from the micro-statistical perspective of single-particle continuous Brownian motion. The statistical quantity “mean residence time” Tr is derived from the Green’s function for unbiased single-particle diffusion and is shown to be consistent with Δtr. The finite statistical lifetime of the randomly moving radioactive atom plays an essential part. For stable particles, Tr is of infinite duration, whereas for an unstable particle (such as 222Rn), with diffusivity D and decay rate λ, Tr is approximately the effective size of the detection region divided by the characteristic diffusion velocity . Comparison of the mean residence time with the time of first passage (or exit time) in the theory of stochastic processes shows the conditions under which the two measures of time are equivalent and helps elucidate the connection between the phenomenological and statistical descriptions of radon diffusion.展开更多
Let {Xn} be a Markov chain with transition probability pij =: aj-(i-1)+,i,j ≥ 0, where aj=0 providedj 〈 0, a0 〉 0, a0+a1〈 1 and ∑∞n=0 an= 1. Let μ∑∞n=1nan. It is known that {Xn} is positive recurrent wh...Let {Xn} be a Markov chain with transition probability pij =: aj-(i-1)+,i,j ≥ 0, where aj=0 providedj 〈 0, a0 〉 0, a0+a1〈 1 and ∑∞n=0 an= 1. Let μ∑∞n=1nan. It is known that {Xn} is positive recurrent when μ 〈 1; is null recurrent when μ= 1; and is transient when μ 〉 1. In this paper, the integrability of the first returning time and the last exit time are discussed. Keywords Geom/G/1 queuing model, first returning time, last exit time, Markov chain展开更多
文摘The motion of a lazy Pearson walker is studied with different probability (p) of jump in two and three dimensions. The probability of exit ( ) from a zone of radius is studied as a function of with different values of jump probability p. The exit probability is found to scale as , which is obtained by method of data collapse. The first passage time ( ) i.e., the time required for first exit from a zone is studied. The probability distribution of first passage time was studied for different values of jump probability (p). The probability distribution of first passage time was found to scale as . Where, F and G are two scaling functions and a, b, g and d are some exponents. In both the dimensions, it is found that, , , and .
文摘In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and drive the joint distribution of the first exit time from an interval and the overshoot over the boundary at the exit time.
文摘Residence time in a flow measurement of radioactivity is the time spent by a pre-determined quantity of radioactive sample in the flow cell. In a recent report of the measurement of indoor radon by passive diffusion in an open volume (i.e. no flow cell or control volume), the concept of residence time was generalized to apply to measurement conditions with random, rather than directed, flow. The generalization, leading to a quantity Δtr, involved use of a) a phenomenological alpha-particle range function to calculate the effective detection volume, and b) a phenomenological description of diffusion by Fick’s law to determine the effective flow velocity. This paper examines the residence time in passive diffusion from the micro-statistical perspective of single-particle continuous Brownian motion. The statistical quantity “mean residence time” Tr is derived from the Green’s function for unbiased single-particle diffusion and is shown to be consistent with Δtr. The finite statistical lifetime of the randomly moving radioactive atom plays an essential part. For stable particles, Tr is of infinite duration, whereas for an unstable particle (such as 222Rn), with diffusivity D and decay rate λ, Tr is approximately the effective size of the detection region divided by the characteristic diffusion velocity . Comparison of the mean residence time with the time of first passage (or exit time) in the theory of stochastic processes shows the conditions under which the two measures of time are equivalent and helps elucidate the connection between the phenomenological and statistical descriptions of radon diffusion.
基金Supported by National Natural Science Foundation of China(Grant Nos.11001070,11101113)Zhejiang Provincial Natural Science Foundation(Grant No.R6090034)
文摘Let {Xn} be a Markov chain with transition probability pij =: aj-(i-1)+,i,j ≥ 0, where aj=0 providedj 〈 0, a0 〉 0, a0+a1〈 1 and ∑∞n=0 an= 1. Let μ∑∞n=1nan. It is known that {Xn} is positive recurrent when μ 〈 1; is null recurrent when μ= 1; and is transient when μ 〉 1. In this paper, the integrability of the first returning time and the last exit time are discussed. Keywords Geom/G/1 queuing model, first returning time, last exit time, Markov chain