This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First...This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.展开更多
A current-mode low input and high output impedances first-order allpass filter using two multiple output second-generation current conveyors (MOCCIIs), one grounded capacitor and one grounded resistor is presented. Th...A current-mode low input and high output impedances first-order allpass filter using two multiple output second-generation current conveyors (MOCCIIs), one grounded capacitor and one grounded resistor is presented. The suggested filter uses a canonical number of passive components without requiring any component matching condition. The frequency responses simulation results of the proposed filter confirm the theoretical analysis.展开更多
The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants(a, c, and V) decrease with increasin...The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants(a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the SiO4^4- tetrahedron decreased by 0.9%(from 0 to 5 GPa), which suggests that it is relatively rigid.Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the Si O4-4tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa.The pressure derivatives(dνi/d P) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth.展开更多
In this paper, we will try to find a universal theoretical model and approximate solutions which can be applied to both mode shape and normal shape actuators and sensors, and which can be predicted the gain of the fir...In this paper, we will try to find a universal theoretical model and approximate solutions which can be applied to both mode shape and normal shape actuators and sensors, and which can be predicted the gain of the first three modes of the mode shape and normal shape actuators and sensors, finally through computer simulation analysis to validate. In order to prove the feasibility of the theory and as well as convenient to use on the electro-mechanical engineering, we will try to simplify the three-dimension structure problem into an one-dimension structure problem. Furthermore we will design one kind of bimorph type piezoelectric cantilever beam, so that it can be used as with the actuator and sensor simultaneously, but also conducive to the theory and simulation analysis. As for the simulation analysis, we will use the ANSYS code.展开更多
Objective: To investigate the application and feasibility of PDCA circulation method in the treatment of patients with severe neurological diseases in Internet + smart first aid, with a view to promoting the sustainab...Objective: To investigate the application and feasibility of PDCA circulation method in the treatment of patients with severe neurological diseases in Internet + smart first aid, with a view to promoting the sustainable construction of smart first aid. Methods: A total of 105 patients with severe neurological diseases in Zhuji people’s Hospital and cooperative units were selected, and 52 cases in the research group and 53 cases in the control group were divided according to the single and double number visiting time: In this paper, through reading the literature, the development of Internet + wisdom first aid treatment of patients with severe neurological diseases was investigated, and the common problems were analyzed and summarized, and the research group used the PDCA circulation method to sort out the existing problems, analyze the causes of the problems and improve them. The difference in treatment time between the two groups was compared, and the patient’s satisfaction was evaluated for the time of being transferred to the hospital emergency room by 120 ambulances, the time from emergency admission to surgery (Cath lab), and the satisfaction of the patient. Results: The time from emergency treatment to the operation room (catheter room) in the study group was significantly shortened, and patient satisfaction was significantly improved compared with that in the control group, with a statistically significant difference (P Conclusion: Through the application of PDCA circulation method in the Internet + smart emergency treatment of neurologically severe preoperative patients, the Internet + smart emergency mode can be continuously improved, the treatment process can be significantly optimized, the first aid time can be shortened, and the treatment efficiency of neurocritical ill patients can be improved. Therefore, it has been expected to improve the success rate of treatment and improve the success rate of neurological patients.展开更多
A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency ...A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.展开更多
文摘This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient.
文摘A current-mode low input and high output impedances first-order allpass filter using two multiple output second-generation current conveyors (MOCCIIs), one grounded capacitor and one grounded resistor is presented. The suggested filter uses a canonical number of passive components without requiring any component matching condition. The frequency responses simulation results of the proposed filter confirm the theoretical analysis.
基金Project supported by the Key Laboratory of Earthquake PredictionInstitute of Earthquake Science+1 种基金China Earthquake Administration(CEA)(Grant No.2012IES010201)the National Natural Science Foundation of China(Grant Nos.41174071 and 41373060)
文摘The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants(a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the SiO4^4- tetrahedron decreased by 0.9%(from 0 to 5 GPa), which suggests that it is relatively rigid.Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the Si O4-4tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa.The pressure derivatives(dνi/d P) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth.
文摘In this paper, we will try to find a universal theoretical model and approximate solutions which can be applied to both mode shape and normal shape actuators and sensors, and which can be predicted the gain of the first three modes of the mode shape and normal shape actuators and sensors, finally through computer simulation analysis to validate. In order to prove the feasibility of the theory and as well as convenient to use on the electro-mechanical engineering, we will try to simplify the three-dimension structure problem into an one-dimension structure problem. Furthermore we will design one kind of bimorph type piezoelectric cantilever beam, so that it can be used as with the actuator and sensor simultaneously, but also conducive to the theory and simulation analysis. As for the simulation analysis, we will use the ANSYS code.
文摘Objective: To investigate the application and feasibility of PDCA circulation method in the treatment of patients with severe neurological diseases in Internet + smart first aid, with a view to promoting the sustainable construction of smart first aid. Methods: A total of 105 patients with severe neurological diseases in Zhuji people’s Hospital and cooperative units were selected, and 52 cases in the research group and 53 cases in the control group were divided according to the single and double number visiting time: In this paper, through reading the literature, the development of Internet + wisdom first aid treatment of patients with severe neurological diseases was investigated, and the common problems were analyzed and summarized, and the research group used the PDCA circulation method to sort out the existing problems, analyze the causes of the problems and improve them. The difference in treatment time between the two groups was compared, and the patient’s satisfaction was evaluated for the time of being transferred to the hospital emergency room by 120 ambulances, the time from emergency admission to surgery (Cath lab), and the satisfaction of the patient. Results: The time from emergency treatment to the operation room (catheter room) in the study group was significantly shortened, and patient satisfaction was significantly improved compared with that in the control group, with a statistically significant difference (P Conclusion: Through the application of PDCA circulation method in the Internet + smart emergency treatment of neurologically severe preoperative patients, the Internet + smart emergency mode can be continuously improved, the treatment process can be significantly optimized, the first aid time can be shortened, and the treatment efficiency of neurocritical ill patients can be improved. Therefore, it has been expected to improve the success rate of treatment and improve the success rate of neurological patients.
文摘A new algorithm, named segmented second empirical mode decomposition (EMD) algorithm, is proposed in this paper in order to reduce the computing time of EMD and make EMD algorithm available to online time-frequency analysis. The original data is divided into some segments with the same length. Each segment data is processed based on the principle of the first-level EMD decomposition. The algorithm is compared with the traditional EMD and results show that it is more useful and effective for analyzing nonlinear and non-stationary signals.