Combing the time corelated single photon counting(TCSPC)with fuorescence lifetime imaging microscopy(FLIM)provides promising opportunities in revealing important information on the microenvironment of cells and tissue...Combing the time corelated single photon counting(TCSPC)with fuorescence lifetime imaging microscopy(FLIM)provides promising opportunities in revealing important information on the microenvironment of cells and tissues,but the applications are thus far mainly limited by the accuracy and precision of the TCSPC-FLIM technique.Here we present a comprehensive in-vestigation on the perforance of two data analysis methods,the first moment(M_(1))method and the conventional least squares(Fitting)method,in quantifying fuorescence lifetime.We found that the Mp method is more superior than the Fitting method when the lifetime is short(70-400ps)or the signal intensity is weak(<10^(3) photons).展开更多
Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the...Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the methods of extracting the time delay from the streaking spectrogram, the simplest one is to calculate the first moment of the spectrogram and to measure its offset relative to the vector potential of the infrared field. The first moment method has been used in many theoretical simulations and analysis of experimental data, but the meaning of this offset needs to be investigated. We simulate the spectrograms and compare the extracted time delay from the first moment with the input Wigner delay. In this study, we show that the first moment method is valid only when the group delay dispersions corresponding to both the spectral phase of the attosecond pulse and the phase of the single-photon transition dipole matrix element of the target are small. Under such circumstance, the electron wave packet behaves like a classical particle and the extracted time delay can be related to a group delay in the photoionization process. To avoid ambiguity and confusion, we also suggest that the photoionization time delay be replaced by photoionization group delay and the Wigner time delay be replaced by Wigner group delay.展开更多
Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their ma...Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals.展开更多
The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borro...The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borrowing ideas form the merits of the other First-Order Second Moment (FOSM) methods. The idea of the direct searching method is constructing a new explicit searching formula to make the new checking point being more closed to the failure surface based on the results of the center point method. The new checking point has steepest descent character because the searching path is the gradient of the approximate surface. An example shows that the method presented in this article has well precision. Although the direct searching formula may not reach the globally optimal point, the error can be controlled owing to the locally optimal plan at each searching step.展开更多
The magnetic moments of the baryon octet are derived from a first principle’s theory, the scalar strong interaction hadron theory, and are in approximate agreement with data. It is conjectured that this agreement may...The magnetic moments of the baryon octet are derived from a first principle’s theory, the scalar strong interaction hadron theory, and are in approximate agreement with data. It is conjectured that this agreement may be improved by including the “spin-orbit coupling” term not evaluated here.展开更多
The ground-state dipole moments and second-order nonlinear optical (NLO) properties of a series of one-dimensional (1D) chromophores with donor-bridge-acceptor (D-B-A) structures have been investigated by using ...The ground-state dipole moments and second-order nonlinear optical (NLO) properties of a series of one-dimensional (1D) chromophores with donor-bridge-acceptor (D-B-A) structures have been investigated by using the second-order MФller-Plesset (MP2) and density functional theory (DFT) methods with the basis set of 6-31+G(d). According to the calculated results, the relationship between the molecular static first hyperpolarizability (βμ) and the directions of electron transition has been summarized. In terms of the sign of βμ, these 1D organic chromophores were classified into two categories: type Ⅰ with negative βμ and type Ⅱ bearing positive βμ. The analyses show that the remarkable difference of the first hyperpolarizabilities between Ⅰ and Ⅱ chromophores is associated mainly with the electrostatic interaction between terminal groups and the transport electrons in excited states. Moreover, different from the popular viewpoint, the obtained results also show that most of this series of 1D D-B-A molecules are more charge-separated in the ground states than in the excited states. As a whole, this theoretical investigation, to some extent, can be considered as a useful reference in designing the NLO chromophores with large first hyperpolarizabilities.展开更多
We present a quantum-chemical analysis of the relationship between the bond length alteration (BLA) and the static first hyperpolarizability of a series of one-dimensional (1D) chromophores with donor-bridge-accep...We present a quantum-chemical analysis of the relationship between the bond length alteration (BLA) and the static first hyperpolarizability of a series of one-dimensional (1D) chromophores with donor-bridge-acceptor (D-B-A) structures. The calculated results show that the parameter BLA can be considered as an indicator to evaluate the molecular first hyper- polarizability. Along the direction of molecular ground-state dipole moments, the evolutions of BLA can be classified into three categories: the first is a non-monotonic line, which represents most chromophores; the second is monotonic increasing; and the third, contrarily, is monotonic decreasing. On the whole, the first hyperpolarizabilities of these studied chromophores are the monotonic functions of BLA along the direction of dipole moments. Therefore, the first hyperpolarizability of these 1D chromophores can be preliminarily evaluated in terms of the development of BLA without a rigorous computation. In other words, one can roughly estimate the relative magnitude of the first hyperpolarizability according to the optimized geometry.展开更多
基金supported by National Basic Research Program of China(Grant No.2011CB910401)the Science Fund for Creative Research Group of China(Grant No.61121004)+1 种基金the National Natural Sci-ence Foundation of China(Grant Nos.30970691 and 61275059)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China,and the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0407).
文摘Combing the time corelated single photon counting(TCSPC)with fuorescence lifetime imaging microscopy(FLIM)provides promising opportunities in revealing important information on the microenvironment of cells and tissues,but the applications are thus far mainly limited by the accuracy and precision of the TCSPC-FLIM technique.Here we present a comprehensive in-vestigation on the perforance of two data analysis methods,the first moment(M_(1))method and the conventional least squares(Fitting)method,in quantifying fuorescence lifetime.We found that the Mp method is more superior than the Fitting method when the lifetime is short(70-400ps)or the signal intensity is weak(<10^(3) photons).
基金Project supported by the Talent Introduction Foundation of Qiannan Normal University of Nationalities,China(Grant No.qnsyrc201619)Natural Science Foundation of Guizhou Provincial Education Department for Young Talents,China(Grant No.Qian Education Contract KY[2017]339)Chemical Sciences,Geosciences and Biosciences Division,Office of Basic Energy Sciences,Office of Science,U.S.Department of Energy(Grant No.DE-FG02-86ER13491)
文摘Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the methods of extracting the time delay from the streaking spectrogram, the simplest one is to calculate the first moment of the spectrogram and to measure its offset relative to the vector potential of the infrared field. The first moment method has been used in many theoretical simulations and analysis of experimental data, but the meaning of this offset needs to be investigated. We simulate the spectrograms and compare the extracted time delay from the first moment with the input Wigner delay. In this study, we show that the first moment method is valid only when the group delay dispersions corresponding to both the spectral phase of the attosecond pulse and the phase of the single-photon transition dipole matrix element of the target are small. Under such circumstance, the electron wave packet behaves like a classical particle and the extracted time delay can be related to a group delay in the photoionization process. To avoid ambiguity and confusion, we also suggest that the photoionization time delay be replaced by photoionization group delay and the Wigner time delay be replaced by Wigner group delay.
基金Project supported by Chongqing Natural Science Foundation,China (Grant Nos.CSCT2010BB4405 and CSTC2008BB4083)the Doctoral Foundation of Chongqing University of Posts and Telecommunications,China(Grant No.A2008-63)
文摘Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals.
文摘The new method is presented for computing engineering structure reliability by direct searching the next checking point and accelerating convergence based on the analysis of errors in the center point method and borrowing ideas form the merits of the other First-Order Second Moment (FOSM) methods. The idea of the direct searching method is constructing a new explicit searching formula to make the new checking point being more closed to the failure surface based on the results of the center point method. The new checking point has steepest descent character because the searching path is the gradient of the approximate surface. An example shows that the method presented in this article has well precision. Although the direct searching formula may not reach the globally optimal point, the error can be controlled owing to the locally optimal plan at each searching step.
文摘The magnetic moments of the baryon octet are derived from a first principle’s theory, the scalar strong interaction hadron theory, and are in approximate agreement with data. It is conjectured that this agreement may be improved by including the “spin-orbit coupling” term not evaluated here.
基金supported by the National Natural Science Foundation of China (20573114)the MOST projects of 200CB720605 and 2006DFA403020
文摘The ground-state dipole moments and second-order nonlinear optical (NLO) properties of a series of one-dimensional (1D) chromophores with donor-bridge-acceptor (D-B-A) structures have been investigated by using the second-order MФller-Plesset (MP2) and density functional theory (DFT) methods with the basis set of 6-31+G(d). According to the calculated results, the relationship between the molecular static first hyperpolarizability (βμ) and the directions of electron transition has been summarized. In terms of the sign of βμ, these 1D organic chromophores were classified into two categories: type Ⅰ with negative βμ and type Ⅱ bearing positive βμ. The analyses show that the remarkable difference of the first hyperpolarizabilities between Ⅰ and Ⅱ chromophores is associated mainly with the electrostatic interaction between terminal groups and the transport electrons in excited states. Moreover, different from the popular viewpoint, the obtained results also show that most of this series of 1D D-B-A molecules are more charge-separated in the ground states than in the excited states. As a whole, this theoretical investigation, to some extent, can be considered as a useful reference in designing the NLO chromophores with large first hyperpolarizabilities.
基金the National Natural Science Foundation of China (20573114)the MOST projects of 2004CB720605and 2006DFA403020
文摘We present a quantum-chemical analysis of the relationship between the bond length alteration (BLA) and the static first hyperpolarizability of a series of one-dimensional (1D) chromophores with donor-bridge-acceptor (D-B-A) structures. The calculated results show that the parameter BLA can be considered as an indicator to evaluate the molecular first hyper- polarizability. Along the direction of molecular ground-state dipole moments, the evolutions of BLA can be classified into three categories: the first is a non-monotonic line, which represents most chromophores; the second is monotonic increasing; and the third, contrarily, is monotonic decreasing. On the whole, the first hyperpolarizabilities of these studied chromophores are the monotonic functions of BLA along the direction of dipole moments. Therefore, the first hyperpolarizability of these 1D chromophores can be preliminarily evaluated in terms of the development of BLA without a rigorous computation. In other words, one can roughly estimate the relative magnitude of the first hyperpolarizability according to the optimized geometry.