The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods fo...The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data.展开更多
First-arrival seismic traveltime tomography(FAST)is a well-established technique to estimate subsurface velocity structures.Although several existing open-source packages are available for first-arrival traveltime tom...First-arrival seismic traveltime tomography(FAST)is a well-established technique to estimate subsurface velocity structures.Although several existing open-source packages are available for first-arrival traveltime tomography,most were written in compiled languages and lack sufficient extendibility for new algorithms and functionalities.In this work,we develop an open-source,selfcontained FAST package based on MATLAB,one of the most popular interpreted scientific programming languages,with a focus on ocean bottom seismometer refraction traveltime tomography.Our package contains a complete traveltime tomography workflow,including ray-tracing-based first-arrival traveltime computation,linearized inversion,quality control,and high-quality visualization.We design the package as a modular toolbox,making it convenient to integrate new algorithms and functionalities as needed.At the current stage,our package is most efficient for performing FAST for two-dimensional ocean bottom seismometer surveys.We demonstrate the efficacy and accuracy of our package by using a synthetic data example based on a modified Marmousi model.展开更多
Subsurface excavation results in the formation of a zone called excavation damaged zone(EDZ)around the tunnel wall.An EDZ is a major concern in the field of high-level radioactive waste disposal because it may act as ...Subsurface excavation results in the formation of a zone called excavation damaged zone(EDZ)around the tunnel wall.An EDZ is a major concern in the field of high-level radioactive waste disposal because it may act as a flow path after the closure of a repository.In this study,first-arrival traveltime tomography was repeatedly conducted on the EDZ at a depth of 350 m in the Horonobe Underground Research Laboratory.However,the acquired data was highly affected by the support structure on the drift wall.For proper visualization of the EDZ,information about the structure was incorporated into the inversion by modifying the model constraint.The synthetic study showed that the approach reproduced the EDZ in the model without the artifacts.The method was applied to field data,and the EDZ around the drift was detected.The inversion was extended to a time-lapse inversion to trace the changes in P-wave velocity in the EDZ.The synthetic study demonstrated that temporal changes in the P-wave velocity distribution could be detected.Data obtained from 12 surveys under open-drift conditions were analyzed by time-lapse inversion.The results indicated that the EDZ did not undergo sealing or evolution at the site for approximately seven years.展开更多
In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assu...In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.展开更多
Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays...Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.展开更多
The fi rst arrival waveform inversion(FAWI)has a strong nonlinearity due to the objective function using L2 parametrization.When the initial velocity is not accurate,the inversion can easily fall into local minima.In ...The fi rst arrival waveform inversion(FAWI)has a strong nonlinearity due to the objective function using L2 parametrization.When the initial velocity is not accurate,the inversion can easily fall into local minima.In the full waveform inversion method,adding a cross-correlation function to the objective function can eff ectively reduce the nonlinearity of the inversion process.In this paper,the nonlinearity of this process is reduced by introducing the correlation objective function into the FAWI and by deriving the corresponding gradient formula.We then combine the first-arrival wave travel-time tomography with the FAWI to form a set of inversion processes.This paper uses the limited memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)algorithm to improve the computational effi ciency of inversion and solve the problem of the low effi ciency of the FAWI method.The overthrust model and fi eld data test show that the method used in this paper can eff ectively reduce the nonlinearity of inversion and improve the inversion calculation effi ciency at the same time.展开更多
Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estim...Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estimate anisotropic parameters that are required for surface seismic depth imaging from vertical seismic profile(VSP) data, because the first arrivals of VSP data can be picked with much higher accuracy. In this study, we developed a method for estimating Thomsen's P-wave anisotropic parameters in VTI media using the first arrivals from walkaway VSP data. Model first-arrival travel times are calculated on the basis of the near-offset normal moveout correction velocity in VTI media and ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropic parameters δ and ε are determined by minimizing the difference between the calculated and observed travel times for the near and far offsets. Numerical forward modeling, using the proposed method indicates that errors between the estimated and measured anisotropic parameters are small. Using field data from an eight-azimuth walkaway VSP in Tarim Basin, we estimated the parameters δ and ε and built an anisotropic depth-velocity model for prestack depth migration processing of surface 3D seismic data. The results show improvement in imaging the carbonate reservoirs and minimizing the depth errors of the geological targets.展开更多
Transducers that are widely applied in cement bond evaluation tools, such as cement bond logs and variable density logs, cannot radiate acoustic energy directionally because of the characteristics of monopole sources....Transducers that are widely applied in cement bond evaluation tools, such as cement bond logs and variable density logs, cannot radiate acoustic energy directionally because of the characteristics of monopole sources. A phased arc array transmitter, which is a novel transducer that differs from monopole and dipole transducers, is presented in this study. To simulate the acoustic field generated by a phased arc array in a fluid-filled cased borehole with different channelings, a 3D finite-difference time-domain method is adopted. The acoustic field generated by a traditional monopole source is also simulated and compared with the field generated by the phased arc array transmitter. Numerical simulation results show that the phased arc array radiates energy directionally in a narrow angular range in the borehole, thereby compressing the acoustic energy into a narrow range in the casing pipe, the cement, and the formation. We present the analyses of first-arrival waveforms and the amplitudes of casing waves at different azimuthal angles for the two different sources. The results indicate that employing a directional source facilitates azimuthal identification and analysis of possible channeling behind the casing pipe.展开更多
To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, t...To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is de- rived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scat- tering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green′s function method and wave equation method.展开更多
基金supported by the Major Research Plan on West-Pacific Earth System Multispheric Interactions (Nos.91858215,91958206)the National Natural Science Foundation of China (NSFC)Shiptime Sharing Project (No.41949581)the Key Research and Development Program of Shandong Province (No.2019GHY112019)。
文摘The precision and reliability of first-arrival picking are crucial for determining the accuracy of geological structure inversion using active source ocean bottom seismometer(OBS)refraction data.Traditional methods for first-arrival picking based on sample points are characterized by theoretical errors,especially in low-sampling-frequency OBS data because the travel time of seismic waves is not an integer multiple of the sampling interval.In this paper,a first-arrival picking method that utilizes the spatial waveform variation characteristics of active source OBS data is presented.First,the distribution law of theoretical error is examined;adjacent traces exhibit variation characteristics in their waveforms.Second,a label cross-correlation superposition method for extracting highfrequency signals is presented to enhance the first-arrival picking precision.Results from synthetic and field data verify that the proposed approach is robust,successfully overcomes the limitations of low sampling frequency,and achieves precise outcomes that are comparable with those of high-sampling-frequency data.
基金financially supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. GML2019 ZD0207)supported by the Guangzhou Municipal Science and Technology Bureau (Grant No. 202102021054)
文摘First-arrival seismic traveltime tomography(FAST)is a well-established technique to estimate subsurface velocity structures.Although several existing open-source packages are available for first-arrival traveltime tomography,most were written in compiled languages and lack sufficient extendibility for new algorithms and functionalities.In this work,we develop an open-source,selfcontained FAST package based on MATLAB,one of the most popular interpreted scientific programming languages,with a focus on ocean bottom seismometer refraction traveltime tomography.Our package contains a complete traveltime tomography workflow,including ray-tracing-based first-arrival traveltime computation,linearized inversion,quality control,and high-quality visualization.We design the package as a modular toolbox,making it convenient to integrate new algorithms and functionalities as needed.At the current stage,our package is most efficient for performing FAST for two-dimensional ocean bottom seismometer surveys.We demonstrate the efficacy and accuracy of our package by using a synthetic data example based on a modified Marmousi model.
基金This study was conducted as part of a commissioned project entitled“The project for validating sealing of the geological repository(2020 and 2021 FY)”funded by the Ministry of Economy,Trade,and Industry of Japan.
文摘Subsurface excavation results in the formation of a zone called excavation damaged zone(EDZ)around the tunnel wall.An EDZ is a major concern in the field of high-level radioactive waste disposal because it may act as a flow path after the closure of a repository.In this study,first-arrival traveltime tomography was repeatedly conducted on the EDZ at a depth of 350 m in the Horonobe Underground Research Laboratory.However,the acquired data was highly affected by the support structure on the drift wall.For proper visualization of the EDZ,information about the structure was incorporated into the inversion by modifying the model constraint.The synthetic study showed that the approach reproduced the EDZ in the model without the artifacts.The method was applied to field data,and the EDZ around the drift was detected.The inversion was extended to a time-lapse inversion to trace the changes in P-wave velocity in the EDZ.The synthetic study demonstrated that temporal changes in the P-wave velocity distribution could be detected.Data obtained from 12 surveys under open-drift conditions were analyzed by time-lapse inversion.The results indicated that the EDZ did not undergo sealing or evolution at the site for approximately seven years.
基金supported by the National Natural Science Foundation of China(Nos.41230318,41074077)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130132110023)the Fundamental Research Funds for the Central Universities of China(No.201413004)
文摘In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.
基金supported by the National Key R&D Program of China(2022YFC3102202)the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research (YSBR-020)。
文摘Distributed Acoustic Sensing(DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional(3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a ShortTerm Average/Long-Term Average(STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances.This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then,we used the Tomo DD software to invert the 3D P-wave velocity structure for the uppermost 50 m with a resolution of 10 m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.
基金supported by the Major Scientific and Technological Project of PetroChina (ZD2019-183-003)Project of National Natural Science Foundation of China (42074133)+1 种基金the Fundamental Research Funds for the Central Universities (19CX02056A)Project of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (33550000-21-FW0399-0009)
文摘The fi rst arrival waveform inversion(FAWI)has a strong nonlinearity due to the objective function using L2 parametrization.When the initial velocity is not accurate,the inversion can easily fall into local minima.In the full waveform inversion method,adding a cross-correlation function to the objective function can eff ectively reduce the nonlinearity of the inversion process.In this paper,the nonlinearity of this process is reduced by introducing the correlation objective function into the FAWI and by deriving the corresponding gradient formula.We then combine the first-arrival wave travel-time tomography with the FAWI to form a set of inversion processes.This paper uses the limited memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)algorithm to improve the computational effi ciency of inversion and solve the problem of the low effi ciency of the FAWI method.The overthrust model and fi eld data test show that the method used in this paper can eff ectively reduce the nonlinearity of inversion and improve the inversion calculation effi ciency at the same time.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05046)
文摘Estimation of Thomsen's anisotropic parameters is very important for accurate time-to-depth conversion and depth migration data processing. Compared with other methods, it is much easier and more reliable to estimate anisotropic parameters that are required for surface seismic depth imaging from vertical seismic profile(VSP) data, because the first arrivals of VSP data can be picked with much higher accuracy. In this study, we developed a method for estimating Thomsen's P-wave anisotropic parameters in VTI media using the first arrivals from walkaway VSP data. Model first-arrival travel times are calculated on the basis of the near-offset normal moveout correction velocity in VTI media and ray tracing using Thomsen's P-wave velocity approximation. Then, the anisotropic parameters δ and ε are determined by minimizing the difference between the calculated and observed travel times for the near and far offsets. Numerical forward modeling, using the proposed method indicates that errors between the estimated and measured anisotropic parameters are small. Using field data from an eight-azimuth walkaway VSP in Tarim Basin, we estimated the parameters δ and ε and built an anisotropic depth-velocity model for prestack depth migration processing of surface 3D seismic data. The results show improvement in imaging the carbonate reservoirs and minimizing the depth errors of the geological targets.
基金supported by the National Natural ScienceFoundation of China (Grant Nos. 11204380, 11374371, 11134011 and 61102102)National Science and Technology Major Project (Grant No. 2011ZX05020-009)PetroChina Innovation Foundation (2013D-5006-0304)
文摘Transducers that are widely applied in cement bond evaluation tools, such as cement bond logs and variable density logs, cannot radiate acoustic energy directionally because of the characteristics of monopole sources. A phased arc array transmitter, which is a novel transducer that differs from monopole and dipole transducers, is presented in this study. To simulate the acoustic field generated by a phased arc array in a fluid-filled cased borehole with different channelings, a 3D finite-difference time-domain method is adopted. The acoustic field generated by a traditional monopole source is also simulated and compared with the field generated by the phased arc array transmitter. Numerical simulation results show that the phased arc array radiates energy directionally in a narrow angular range in the borehole, thereby compressing the acoustic energy into a narrow range in the casing pipe, the cement, and the formation. We present the analyses of first-arrival waveforms and the amplitudes of casing waves at different azimuthal angles for the two different sources. The results indicate that employing a directional source facilitates azimuthal identification and analysis of possible channeling behind the casing pipe.
基金National Natural Science Foundation of China (49894190-024) and Geophysical Prospecting Key Laboratory Foundation of China National Petroleum Corporation.
文摘To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is de- rived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scat- tering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green′s function method and wave equation method.