The quality factor Q is an important parameter because it can refl ect the reservoir attenuated features and can be used for inverse-Q filtering to compensate for the seismic wave energy.The accuracy of the Q estimati...The quality factor Q is an important parameter because it can refl ect the reservoir attenuated features and can be used for inverse-Q filtering to compensate for the seismic wave energy.The accuracy of the Q estimation is greatly significant for improving the precision of the reservoir prediction and the resolution of seismic data.In this paper,the Q estimation formulas of the single-frequency point are derived on the basis of a diff erent-order Taylor series expansion of the amplitude attenuated factor.Moreover,the multifrequency point average(MFPA)method is introduced to obtain a stable Q estimation.The model tests demonstrate that the MFPA method is less aff ected by the frequency band,travel time diff erence,time window width,and noise interference than the logical spectrum ratio(LSR)method and the energy ratio(ER)method and has a higher Q estimation accuracy.In addition,the proposed method can be applied to post-stack seismic data and obtain eff ective Q values of complex models.When the MFPA method was applied to real marine seismic data,the Q values estimated by the MFPA method with the 1st–4th order showed good consistency with each other.In contrast,the Q values obtained by the ER method were larger than those of the proposed method,while those estimated by the LSR method signifi cantly deviated from the average values.In conclusion,the MFPA method has superior stability and practicability for the Q estimation.展开更多
A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obta...A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obtained from other algorithms. It is shown that the suggested algorithm competes strongly with other existing algorithms, both in accuracy and ease of application, while demanding a shorter computation time.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
时域有限差分法(FDTD)是计算电磁领域中的一类非常重要的研究工具。而 Taylor 级数展开定理是构造差分格式的一种重要方法,例如 Yee 格式采用二阶 Taylor 格式,Fang 格式采用四阶 Taylor 格式。本文借助于采样定理,详细分析了不同阶 Tay...时域有限差分法(FDTD)是计算电磁领域中的一类非常重要的研究工具。而 Taylor 级数展开定理是构造差分格式的一种重要方法,例如 Yee 格式采用二阶 Taylor 格式,Fang 格式采用四阶 Taylor 格式。本文借助于采样定理,详细分析了不同阶 Taylor 中心差分格式的谱特性以及计算误差,并将任意阶 Taylor 中心差分格式用于数值求解麦克斯韦方程中,严格导出了稳定性条件和数值色散关系的表达式,引入了新的误差定义来衡量算法的好坏。详细地研究了 Courant 数、网格分辨率 CPW 和网格长度比率等因素对于数值色散误差的影响,为基于 Taylor 差分格式的 FDTD 算法的研究提供了有用的参考。展开更多
In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is ...In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is employed instead of the previous direct Fourier transform(DFT)image reconstruction method,which consumes the majority of the computational time for target image reconstruction.The partial derivatives in the Taylor series are computed using the fast Fourier transform(FFT)of the entire image,following the principles of Fourier transform theory.To examine the impact of different orders of Taylor series expansion on accuracy and efficiency,we employ third-and fourth-order Taylor series image reconstruction methods and compare them with the DFT image reconstruction method through simulated experiments.As a result of these enhancements,the computational efficiency using the third-and fourth-order Taylor series improves by factors of 57 and 46,respectively,compared to the previous method.In terms of analysis accuracy,within a strain range of 0–0.1 and without the addition of image noise,the accuracy of the proposed method increases with higher expansion orders,surpassing that of the DFT image reconstruction method when the fourth order is utilized.However,when different levels of Gaussian noise are applied to simulated images individually,the accuracy of the third-or fourth-order Taylor series expansion method is superior to that of the DFT reconstruction method.Finally,we present the analyzed experimental results of a silicone rubber plate specimen with bilateral cracks under uniaxial tension.展开更多
基金supported by The National Natural Science Foundation (Grant Nos.41874126, 42004114)the Key Research and development project of Jiangxi Province in China (Grant No.20192ACB80006)+1 种基金the Natural Science Foundation of Jiangxi Province (Grant Nos. 20202BAB211010, 20212BAB203005)Open Foundation of State Key Laboratory of Nuclear Resources and Environment (2020NRE25)
文摘The quality factor Q is an important parameter because it can refl ect the reservoir attenuated features and can be used for inverse-Q filtering to compensate for the seismic wave energy.The accuracy of the Q estimation is greatly significant for improving the precision of the reservoir prediction and the resolution of seismic data.In this paper,the Q estimation formulas of the single-frequency point are derived on the basis of a diff erent-order Taylor series expansion of the amplitude attenuated factor.Moreover,the multifrequency point average(MFPA)method is introduced to obtain a stable Q estimation.The model tests demonstrate that the MFPA method is less aff ected by the frequency band,travel time diff erence,time window width,and noise interference than the logical spectrum ratio(LSR)method and the energy ratio(ER)method and has a higher Q estimation accuracy.In addition,the proposed method can be applied to post-stack seismic data and obtain eff ective Q values of complex models.When the MFPA method was applied to real marine seismic data,the Q values estimated by the MFPA method with the 1st–4th order showed good consistency with each other.In contrast,the Q values obtained by the ER method were larger than those of the proposed method,while those estimated by the LSR method signifi cantly deviated from the average values.In conclusion,the MFPA method has superior stability and practicability for the Q estimation.
文摘A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obtained from other algorithms. It is shown that the suggested algorithm competes strongly with other existing algorithms, both in accuracy and ease of application, while demanding a shorter computation time.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
文摘时域有限差分法(FDTD)是计算电磁领域中的一类非常重要的研究工具。而 Taylor 级数展开定理是构造差分格式的一种重要方法,例如 Yee 格式采用二阶 Taylor 格式,Fang 格式采用四阶 Taylor 格式。本文借助于采样定理,详细分析了不同阶 Taylor 中心差分格式的谱特性以及计算误差,并将任意阶 Taylor 中心差分格式用于数值求解麦克斯韦方程中,严格导出了稳定性条件和数值色散关系的表达式,引入了新的误差定义来衡量算法的好坏。详细地研究了 Courant 数、网格分辨率 CPW 和网格长度比率等因素对于数值色散误差的影响,为基于 Taylor 差分格式的 FDTD 算法的研究提供了有用的参考。
基金supported by the National Natural Science Foundation of China(Grant Nos.12272145 and 11972013)the Ministry of Science and Technology of China(Grant No.2018YFF01014200)Hubei Provincial Natural Science Foundation of China(Grant No.2022CFB288).
文摘In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is employed instead of the previous direct Fourier transform(DFT)image reconstruction method,which consumes the majority of the computational time for target image reconstruction.The partial derivatives in the Taylor series are computed using the fast Fourier transform(FFT)of the entire image,following the principles of Fourier transform theory.To examine the impact of different orders of Taylor series expansion on accuracy and efficiency,we employ third-and fourth-order Taylor series image reconstruction methods and compare them with the DFT image reconstruction method through simulated experiments.As a result of these enhancements,the computational efficiency using the third-and fourth-order Taylor series improves by factors of 57 and 46,respectively,compared to the previous method.In terms of analysis accuracy,within a strain range of 0–0.1 and without the addition of image noise,the accuracy of the proposed method increases with higher expansion orders,surpassing that of the DFT image reconstruction method when the fourth order is utilized.However,when different levels of Gaussian noise are applied to simulated images individually,the accuracy of the third-or fourth-order Taylor series expansion method is superior to that of the DFT reconstruction method.Finally,we present the analyzed experimental results of a silicone rubber plate specimen with bilateral cracks under uniaxial tension.