Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna...Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.展开更多
Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi...Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.展开更多
In this article, we consider quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" ...In this article, we consider quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" alt="" /> Such equations have been derived as models of several physical phenomena. The nonlinearity here corresponds to the superfluid film equation in plasma physics. Unlike all known results in the literature, the nonlinearity is allowed to be indefinite. It is very interesting from physical and mathematical viewpoint. By mountain pass theorem and some special techniques, we prove the existence of solutions for the quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations with indefinite nonlinearity. This indefinite problem had never been considered so far. So our main results can be regarded as complementary work in the literature.展开更多
The current method of solving first order indefinite equatio n is changing the equation to first order indefinite equation gr oup to solve. But according this method, if variables are very many, it will be difficul...The current method of solving first order indefinite equatio n is changing the equation to first order indefinite equation gr oup to solve. But according this method, if variables are very many, it will be difficult to solve the equation using the current method. In this paper, it prov ides a simple method by discussing the structure of solution based on the theory of free abelian group. In addition, this method makes it easy to get the genera lized solution of the equation using the computer.展开更多
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv...In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.展开更多
A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illus...A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.展开更多
Indefinite equation is an unsolved problem in number theory. Through explo-ration, the author has been able to use a simple elementary algebraic method to solve the solutions of all three variable indefinite equations...Indefinite equation is an unsolved problem in number theory. Through explo-ration, the author has been able to use a simple elementary algebraic method to solve the solutions of all three variable indefinite equations. In this paper, we will introduce and prove the solutions of Pythagorean equation, Fermat’s the-orem, Bill equation and so on.展开更多
The finite element method has established itself as an efficient numerical procedure for the solution of arbitrary-shaped field problems in space. Basically, the finite element method transforms the underlying differe...The finite element method has established itself as an efficient numerical procedure for the solution of arbitrary-shaped field problems in space. Basically, the finite element method transforms the underlying differential equation into a system of algebraic equations by application of the method of weighted residuals in conjunction with a finite element ansatz. However, this procedure is restricted to even-ordered differential equations and leads to symmetric system matrices as a key property of the finite element method. This paper aims in a generalization of the finite element method towards the solution of first-order differential equations. This is achieved by an approach which replaces the first-order derivative by fractional powers of operators making use of the square root of a Sturm-Liouville operator. The resulting procedure incorporates a finite element formulation and leads to a symmetric but dense system matrix. Finally, the scheme is applied to the barometric equation where the results are compared with the analytical solution and other numerical approaches. It turns out that the resulting numerical scheme shows excellent convergence properties.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solution...This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-...In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.展开更多
This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discret...This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.展开更多
An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) a...An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) are all real numbers has been presented here.展开更多
In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation method...In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation methods are based on the variation-of-constants formula, incorporating a local Fourier expansion of the underlying problem with collocation meth- ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca- tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es- sential extension of these existing methods. We also analyse the accuracy in preserving the quadratic invariants and the Hamiltonian energy when the underlying system is a Hamiltonian system. Other properties of EFCMs including the order of approximations and the convergence of fixed-point iterations are investigated as well. The analysis given in this paper proves further that EFCMs can achieve arbitrarily high order in a routine manner which allows us to construct higher-order methods for solving systems of first- order ordinary differential equations conveniently. We also derive a practical fourth-order EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM, an energy-preserving collocation method and a fourth-order exponential integrator in the literature. The numerical results demonstrate the remarkable efficiency and robustness of the novel EFCM(2,2).展开更多
We discuss the stochastic linear-quadratic(LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of re...We discuss the stochastic linear-quadratic(LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of relax compensator that extends the stochastic Hamiltonian system and stochastic Riccati equation with Poisson processes(SREP) from the positive definite case to the indefinite case. We mainly study the existence and uniqueness of the solution for the stochastic Hamiltonian system and obtain the optimal control with open-loop form. Then, we further investigate the existence and uniqueness of the solution for SREP in some special case and obtain the optimal control in close-loop form.展开更多
To this day for special m and small |c|, solvable, c are obtained about general equations x^2-my^2=c with positive squarefree integer m and integer c by Ankeny, Mollin et al. Afterwards, Zhang in ref. [1] greatly deve...To this day for special m and small |c|, solvable, c are obtained about general equations x^2-my^2=c with positive squarefree integer m and integer c by Ankeny, Mollin et al. Afterwards, Zhang in ref. [1] greatly developed their correspondent results and gave all proper integer solutions and solvable c about the equations for general m. Then Lu in ref. [2] gave results for small |q| about general binary quadric indefinite展开更多
A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,...A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,we obtain a family of closed-loop equilibrium strategies via multi-person differential games.This result extends Yong’s work(2017) in the case of stochastic differential equations,where a unique closed-loop equilibrium strategy can be derived under standard conditions(namely,the control cost weighting matrix is uniformly positive definite,and the other weighting coefficients are positive semidefinite).展开更多
文摘Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.201822011)the National Key R&D Program of China(No.2018YFC1405900)+1 种基金the National Natural Science Foundation of China(Nos.41674118 and 41574105)the National Science and Technology Major Project(No.2016ZX05027002)。
文摘Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.
文摘In this article, we consider quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" alt="" /> Such equations have been derived as models of several physical phenomena. The nonlinearity here corresponds to the superfluid film equation in plasma physics. Unlike all known results in the literature, the nonlinearity is allowed to be indefinite. It is very interesting from physical and mathematical viewpoint. By mountain pass theorem and some special techniques, we prove the existence of solutions for the quasilinear <span style="white-space:nowrap;">Schrödinger</span> equations with indefinite nonlinearity. This indefinite problem had never been considered so far. So our main results can be regarded as complementary work in the literature.
文摘The current method of solving first order indefinite equatio n is changing the equation to first order indefinite equation gr oup to solve. But according this method, if variables are very many, it will be difficult to solve the equation using the current method. In this paper, it prov ides a simple method by discussing the structure of solution based on the theory of free abelian group. In addition, this method makes it easy to get the genera lized solution of the equation using the computer.
文摘In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.
文摘A posteriori error estimate of the discontinuous-streamline diffusion method for first-order hyperbolic equations was presented, which can be used to adjust space mesh reasonably. A numerical example is given to illustrate the accuracy and feasibility of this method.
文摘Indefinite equation is an unsolved problem in number theory. Through explo-ration, the author has been able to use a simple elementary algebraic method to solve the solutions of all three variable indefinite equations. In this paper, we will introduce and prove the solutions of Pythagorean equation, Fermat’s the-orem, Bill equation and so on.
文摘The finite element method has established itself as an efficient numerical procedure for the solution of arbitrary-shaped field problems in space. Basically, the finite element method transforms the underlying differential equation into a system of algebraic equations by application of the method of weighted residuals in conjunction with a finite element ansatz. However, this procedure is restricted to even-ordered differential equations and leads to symmetric system matrices as a key property of the finite element method. This paper aims in a generalization of the finite element method towards the solution of first-order differential equations. This is achieved by an approach which replaces the first-order derivative by fractional powers of operators making use of the square root of a Sturm-Liouville operator. The resulting procedure incorporates a finite element formulation and leads to a symmetric but dense system matrix. Finally, the scheme is applied to the barometric equation where the results are compared with the analytical solution and other numerical approaches. It turns out that the resulting numerical scheme shows excellent convergence properties.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduate(CX2013A003)the NNSF(11171351,11361078)SRFDP(20120162110021)of China
文摘This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.
文摘In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.
基金supported by the National Natural Science Foundation of China under Grant Nos.61821004 and 62250056the Natural Science Foundation of Shandong Province under Grant Nos.ZR2021ZD14 and ZR2021JQ24+1 种基金Science and Technology Project of Qingdao West Coast New Area under Grant Nos.2019-32,2020-20,2020-1-4,High-level Talent Team Project of Qingdao West Coast New Area under Grant No.RCTDJC-2019-05Key Research and Development Program of Shandong Province under Grant No.2020CXGC01208.
文摘This paper focuses on linear-quadratic(LQ)optimal control for a class of systems governed by first-order hyperbolic partial differential equations(PDEs).Different from most of the previous works,an approach of discretization-then-continuousization is proposed in this paper to cope with the infinite-dimensional nature of PDE systems.The contributions of this paper consist of the following aspects:(1)The differential Riccati equations and the solvability condition of the LQ optimal control problems are obtained via the discretization-then-continuousization method.(2)A numerical calculation way of the differential Riccati equations and a practical design way of the optimal controller are proposed.Meanwhile,the relationship between the optimal costate and the optimal state is established by solving a set of forward and backward partial difference equations(FBPDEs).(3)The correctness of the method used in this paper is verified by a complementary continuous method and the comparative analysis with the existing operator results is presented.It is shown that the proposed results not only contain the classic results of the standard LQ control problem of systems governed by ordinary differential equations as a special case,but also support the existing operator results and give a more convenient form of computation.
文摘An alternative method of solving Lagrange's first-order partial differential equation of the form(a1x +b1y+C1z)p+ (a2x +b2y+c2z)q =a3x +b3y+c3z,where p = Эz/Эx, q = Эz/Эy and ai, bi, ci (i = 1,2,3) are all real numbers has been presented here.
文摘In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is presented for solving systems of first-order ordinary differential equations. These so-called exponential Fourier collocation methods are based on the variation-of-constants formula, incorporating a local Fourier expansion of the underlying problem with collocation meth- ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca- tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es- sential extension of these existing methods. We also analyse the accuracy in preserving the quadratic invariants and the Hamiltonian energy when the underlying system is a Hamiltonian system. Other properties of EFCMs including the order of approximations and the convergence of fixed-point iterations are investigated as well. The analysis given in this paper proves further that EFCMs can achieve arbitrarily high order in a routine manner which allows us to construct higher-order methods for solving systems of first- order ordinary differential equations conveniently. We also derive a practical fourth-order EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM, an energy-preserving collocation method and a fourth-order exponential integrator in the literature. The numerical results demonstrate the remarkable efficiency and robustness of the novel EFCM(2,2).
基金supported by National Natural Science Foundation of China (Grant Nos. 61573217,11471192 and 11626142)the National High-Level Personnel of Special Support Program,the Chang Jiang Scholar Program of Chinese Education Ministry+2 种基金the Natural Science Foundation of Shandong Province (Grant Nos. JQ201401 and ZR2016AB08)the Colleges and Universities Science and Technology Plan Project of Shandong Province (Grant No. J16LI55)the Fostering Project of Dominant Discipline and Talent Team of Shandong University of Finance and Economics
文摘We discuss the stochastic linear-quadratic(LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of relax compensator that extends the stochastic Hamiltonian system and stochastic Riccati equation with Poisson processes(SREP) from the positive definite case to the indefinite case. We mainly study the existence and uniqueness of the solution for the stochastic Hamiltonian system and obtain the optimal control with open-loop form. Then, we further investigate the existence and uniqueness of the solution for SREP in some special case and obtain the optimal control in close-loop form.
文摘To this day for special m and small |c|, solvable, c are obtained about general equations x^2-my^2=c with positive squarefree integer m and integer c by Ankeny, Mollin et al. Afterwards, Zhang in ref. [1] greatly developed their correspondent results and gave all proper integer solutions and solvable c about the equations for general m. Then Lu in ref. [2] gave results for small |q| about general binary quadric indefinite
基金supported by National Natural Science Foundation of China (Grant Nos.12025105, 11971334 and 11931011)the Chang Jiang Scholars Program and the Science Development Project of Sichuan University (Grant Nos. 2020SCUNL101 and 2020SCUNL201)。
文摘A time-inconsistent linear-quadratic optimal control problem for stochastic differential equations is studied.We introduce conditions where the control cost weighting matrix is possibly singular.Under such conditions,we obtain a family of closed-loop equilibrium strategies via multi-person differential games.This result extends Yong’s work(2017) in the case of stochastic differential equations,where a unique closed-loop equilibrium strategy can be derived under standard conditions(namely,the control cost weighting matrix is uniformly positive definite,and the other weighting coefficients are positive semidefinite).