期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A hybrid attention model based on first-order statistical features for smoke recognition
1
作者 GUO Nan LIU JiaHui +2 位作者 DI KeXin GU Ke QIAO JunFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第3期809-822,共14页
Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffe... Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffer from problems like the variability of the features, complexity of scenarios, interference from background, changeable weather conditions as well as image quality problems, identifying smoke and fire accurately and promptly from a given image still remains a substantial challenge. Automatically learning the features of smoke images by CNNs has improved the target recognition ability compared to traditional approaches,nonetheless, convolutions and pooling operations in CNNs may cause severe information loss which may lead to misjudgment.To tackle the above problems, this paper proposed a hybrid attention model based on the characteristics of smoke images. This model adopted multiple optimized attention mechanism in several stages to quickly and precisely capture the important features,achieving state-of-the-art performance on smoke and fire recognition in terms of accuracy and speed. Our proposed module mainly consists of two stages: pooling and attention. In the first stage, we conducted several newly proposed first-order pooling methods. Through traversing the data space in a larger scope, features are better reserved, thus constructing a more intact feature space of smoke and fire in an image. In the second stage, feature maps are aggregated together to perform channel and spatial attention. The channel and spatial dependencies allow us to quickly catch the important features presented in an image. By fully exploring the feature space and prominent salient features, characteristics of smoke and fire are better presented so as to obtain better smoke and fire detection results. Experiments have been conducted on public smoke detection dataset and new proposed fine-grained smoke and fire detection database. Experimental results revealed that the proposed method outperformed popular deep CNNs and existing prevalent attention models for smoke and fire detection problems. 展开更多
关键词 hybrid attention first-order pooling smoke and fire detection deep convolutional neural networks
原文传递
基于电流反馈放大器的多相位正弦振荡器 被引量:2
2
作者 彭良玉 张春熹 +1 位作者 何怡刚 黄满池 《吉首大学学报(自然科学版)》 CAS 2006年第3期52-54,共3页
提出了一种用电流反馈放大器设计奇数阶多相位正弦振荡器的方法,设计出的振荡器能产生任意奇数阶等幅等相差正弦信号,三相和五相正弦振荡器的仿真结果验证了理论分析的正确性.
关键词 电流反馈放大器 多相位正弦振荡器 一阶低通网络
下载PDF
Sensitivity analysis for stochastic user equilibrium with elastic demand assignment model
3
作者 王建 吴鼎新 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期363-367,共5页
This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables... This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters. 展开更多
关键词 network modeling stochastic user equilibrium elastic demand sensitivity analysis first-order approximation
下载PDF
基于BP神经网络的汽车车载称重系统研究 被引量:8
4
作者 秦伟 徐国艳 余贵珍 《汽车工程》 EI CSCD 北大核心 2017年第5期599-605,共7页
为解决汽车超载运行和相应的运输业管理问题,本文中提出了一套基于BP神经网络的车载称重系统。通过检测车桥随载荷量变化而产生的微小变形,设计了2阶低通滤波和数字滤波算法,以提取有效载荷信息,利用BP神经网络建立载荷模型,并根据在某... 为解决汽车超载运行和相应的运输业管理问题,本文中提出了一套基于BP神经网络的车载称重系统。通过检测车桥随载荷量变化而产生的微小变形,设计了2阶低通滤波和数字滤波算法,以提取有效载荷信息,利用BP神经网络建立载荷模型,并根据在某轻型厢式货车上进行的试装和加载试验得到的样本数据,在Matlab神经网络工具箱中,采用Levenberg-Marquardt学习算法完成了神经网络的学习、检验和预测。结果表明:预测载荷误差在5%以内,满足工程要求,方案可行。 展开更多
关键词 车载称重系统 低通滤波 BP神经网络 Levenberg.Marquardt学习算法
下载PDF
W波段高灵敏检波器的研究
5
作者 李飞宇 张勇 《微波学报》 CSCD 北大核心 2016年第S1期248-250,共3页
毫米波检波器作为功率计与辐射计的关键部件,在毫米波系统中起着重要的作用。本文详细的介绍了一种运用混合集成技术检波器的设计。该检波器采用WR10标准矩形波导作为输入端,通过微带探针过渡实现波导到微带的过渡,采用微电子所的二极管... 毫米波检波器作为功率计与辐射计的关键部件,在毫米波系统中起着重要的作用。本文详细的介绍了一种运用混合集成技术检波器的设计。该检波器采用WR10标准矩形波导作为输入端,通过微带探针过渡实现波导到微带的过渡,采用微电子所的二极管,并基于场仿真软件HFSS与路仿真软件ADS的联合使用,设计了一款工作于W波段的高灵敏度检波器。整个电路结构包括输入波导到微带线的过渡结构、二极管、低通滤波器以及输入输出匹配电路等部分。该检波器仿真结果较好,电压灵敏度在86GHz-98GHz可以达到≥1000m V/m W的指标。 展开更多
关键词 检波器 过渡结构 阻抗匹配 低通滤波器 电压灵敏度
下载PDF
不等波纹函数的综合与分析方法及其在微波领域中的应用
6
作者 李壮 《微波学报》 CSCD 北大核心 2007年第3期52-60,共9页
将低通原型网络的特征函数扩展为奇次或偶次多项式,将其命名为不等波纹函数。文中讨论了不等波纹函数型低通原型网络的特征,导出综合与分析方法的公式。给出两个应用实例:(综合)设计收、发共用(通信)天线元的带阻式阻抗匹配网络;设计Ku... 将低通原型网络的特征函数扩展为奇次或偶次多项式,将其命名为不等波纹函数。文中讨论了不等波纹函数型低通原型网络的特征,导出综合与分析方法的公式。给出两个应用实例:(综合)设计收、发共用(通信)天线元的带阻式阻抗匹配网络;设计Ku/Ka频段的低通型MEMS移相器。这两个实例均为用不等波纹函数综合与分析方法得到的新型微波器件。 展开更多
关键词 不等波纹函数 综合方法 分析方法 带阻式阻抗匹配网络 低通型MEMS移相器
下载PDF
VPVnet:A Velocity-Pressure-Vorticity Neural Network Method for the Stokes’Equations under Reduced Regularity
7
作者 Yujie Liu Chao Yang 《Communications in Computational Physics》 SCIE 2022年第3期739-770,共32页
We present VPVnet,a deep neural network method for the Stokes’equa-tions under reduced regularity.Different with recently proposed deep learning meth-ods[40,51]which are based on the original form of PDEs,VPVnet uses... We present VPVnet,a deep neural network method for the Stokes’equa-tions under reduced regularity.Different with recently proposed deep learning meth-ods[40,51]which are based on the original form of PDEs,VPVnet uses the least square functional of thefirst-order velocity-pressure-vorticity(VPV)formulation([30])as loss functions.As such,onlyfirst-order derivative is required in the loss functions,hence the method is applicable to a much larger class of problems,e.g.problems with non-smooth solutions.Despite that several methods have been proposed recently to reduce the regularity requirement by transforming the original problem into a corresponding variational form,while for the Stokes’equations,the choice of approximating spaces for the velocity and the pressure has to satisfy the LBB condition additionally.Here by making use of the VPV formulation,lower regularity requirement is achieved with no need for considering the LBB condition.Convergence and error estimates have been established for the proposed method.It is worth emphasizing that the VPVnet method is divergence-free and pressure-robust,while classical inf-sup stable mixedfinite elements for the Stokes’equations are not pressure-robust.Various numerical experiments including 2D and 3D lid-driven cavity test cases are conducted to demon-strate its efficiency and accuracy. 展开更多
关键词 Stokes’equations deep neural network method first-order velocity-pressure-vorticity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部