In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering ...In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.展开更多
The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,w...The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,which assumes that the upper and lower media of a horizontal interface are single-phase media.Limited by this assumption,AVO analysis has limited prediction and identification accuracy for complex porous reservoirs.In view of this,the first-order approximate analytical expressions of oblique elastic wave at an interface of porous media are derived.Firstly,the incident and scattering characteristics of various waves at the interface of porous media are analyzed,and the displacement vectors generated by these elastic waves are described by exponential function.Secondly,the kinematic and dynamic boundary conditions at the interface of porous media are discussed.Thirdly,by substituting the displacement vectors of incident and scattered waves into boundary conditions,the exact analytical equation is derived.Then,considering the symmetry of scattering matrix in the equation,the exact analytical expressions of each scattered wave are obtained.Furthermore,under the assumptions of small incident angle,weak elasticity at an interface of porous media,and ignoring the second-and higherorder terms,the first-order approximate analytical expressions are derived.Establishing a model of sandstone porous media with different porosity in upper and lower media,the correctness of the approximate analytical expressions is verified,and the elastic wave response characteristics of lithology and pore fluids are analyzed.展开更多
When deriving the Fourier diffraction theorem based on the first-order Born approximation,the difference between wave number of the scattering object and that of the surrounding medium is ignored,causing substantial e...When deriving the Fourier diffraction theorem based on the first-order Born approximation,the difference between wave number of the scattering object and that of the surrounding medium is ignored,causing substantial errors in sound scattering prediction.This paper modifies the Born approximation by taking into account the amplitude and phase changes between the scattering object and the water due to the wave number difference.By changing the radius and center position of the sampling circle in the Fourier domain,accuracy of the predicted sound scattering is improved.With the modified Born approximation,the computed far-field directional pattern of the scattered sound from a circular cylinder is in good agreement with the rigorous solution.Numerical calculations for several objects with different shapes are used to show applicability and effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50379046)the Doctoral Fund of the Ministry of Education of China(Grant No.A50221)
文摘In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
基金financially supported by the National Natural Science Foundation of China(Grant No.42104131)the Natural Science Foundation of Sichuan Province of China(Grant No.2022NSFSC1140)Open Fund(PLC20211101)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
文摘The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,which assumes that the upper and lower media of a horizontal interface are single-phase media.Limited by this assumption,AVO analysis has limited prediction and identification accuracy for complex porous reservoirs.In view of this,the first-order approximate analytical expressions of oblique elastic wave at an interface of porous media are derived.Firstly,the incident and scattering characteristics of various waves at the interface of porous media are analyzed,and the displacement vectors generated by these elastic waves are described by exponential function.Secondly,the kinematic and dynamic boundary conditions at the interface of porous media are discussed.Thirdly,by substituting the displacement vectors of incident and scattered waves into boundary conditions,the exact analytical equation is derived.Then,considering the symmetry of scattering matrix in the equation,the exact analytical expressions of each scattered wave are obtained.Furthermore,under the assumptions of small incident angle,weak elasticity at an interface of porous media,and ignoring the second-and higherorder terms,the first-order approximate analytical expressions are derived.Establishing a model of sandstone porous media with different porosity in upper and lower media,the correctness of the approximate analytical expressions is verified,and the elastic wave response characteristics of lithology and pore fluids are analyzed.
基金supported by the National Natural Science Foundation of China(61071187)Key Laboratory Foundation for Underwater Test and Control Technology(9140c260201110c26)
文摘When deriving the Fourier diffraction theorem based on the first-order Born approximation,the difference between wave number of the scattering object and that of the surrounding medium is ignored,causing substantial errors in sound scattering prediction.This paper modifies the Born approximation by taking into account the amplitude and phase changes between the scattering object and the water due to the wave number difference.By changing the radius and center position of the sampling circle in the Fourier domain,accuracy of the predicted sound scattering is improved.With the modified Born approximation,the computed far-field directional pattern of the scattered sound from a circular cylinder is in good agreement with the rigorous solution.Numerical calculations for several objects with different shapes are used to show applicability and effectiveness of the proposed method.