Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional pl...Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.展开更多
The stabilization problem of distributed proportional-integral-derivative(PID)controllers for general first-order multi-agent systems with time delay is investigated in the paper.The closed-loop multi-input multi-outp...The stabilization problem of distributed proportional-integral-derivative(PID)controllers for general first-order multi-agent systems with time delay is investigated in the paper.The closed-loop multi-input multi-output(MIMO)framework in frequency domain is firstly introduced for the multi-agent system.Based on the matrix theory,the whole system is decoupled into several subsystems with respect to the eigenvalues of the Laplacian matrix.Considering that the eigenvalues may be complex numbers,the consensus problem of the multi-agent system is transformed into the stabilizing problem of all the subsystems with complex coefficients.For each subsystem with complex coefficients,the range of admissible proportional gains is analytically determined.Then,the stabilizing region in the space of integral gain and derivative gain for a given proportional gain value is also obtained in an analytical form.The entire stabilizing set can be determined by sweeping proportional gain in the allowable range.The proposed method is conducted for general first-order multi-agent systems under arbitrary topology including undirected and directed graph topology.Besides,the results in the paper provide the basis for the design of distributed PID controllers satisfying different performance criteria.The simulation examples are presented to check the validity of the proposed control strategy.展开更多
Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and...Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
Biologically,because of the impact of reproduction period and nonlocal dispersal of HIV-infected cells,time delay and spatial heterogeneity should be considered.In this paper,we establish an HIV infection model with n...Biologically,because of the impact of reproduction period and nonlocal dispersal of HIV-infected cells,time delay and spatial heterogeneity should be considered.In this paper,we establish an HIV infection model with nonlocal dispersal and infection age.Moreover,applying the theory of Fourier transformation and von Foerster rule,we transform the model to an integrodifferential equation with nonlocal time delay and dispersal.The well-posedness,positivity,and boundedness of the solution for the model are studied.展开更多
During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There ...During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.展开更多
In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel ...In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.展开更多
A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dyn...A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dynamic absorbers with different structural and control parameters as examples, the effects of third-order nonlinear coefficients, time-delay control parameters, and negative stiffness coefficients on reducing the replication of the main system were discussed. The nonlinear dynamic absorber has a very good vibration reduction effect at the resonance point of the main system and a nearby area, and when 1 increases to a certain level, the stable region of the system continues to increase. The amplitude curve of the main system of a nonlinear dynamic absorber will generate Hop bifurcation and saddle node bifurcation in the region far from the resonance point, resulting in almost periodic motion and jumping phenomena in the system. For nonlinear dynamic absorbers with determined structural parameters, time-delay feedback control can be adopted to control the amplitude of the main system. For different negative stiffness coefficients, there exists a minimum damping point for the amplitude of the main system under the determined system structural parameters and time-delay feedback control parameters.展开更多
This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause ...This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.展开更多
The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting projec...The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting project, the capability of the EMD (empirical mode decomposition) method in identifying the delay time of short millisecond blasting with precise initiation was compared with the instantaneous energy method based on Hilbert-Huang transform (HHT). The recognition rate of the EMD method was more than 80%, while the instantaneous energy method was less than 25%. By analyzing the instantaneous energy of single-hole blasting signal, it was found that the instantaneous energy method was adaptable to millisecond blasting with delay time longer than half of the energy peak period. The EMD method was used to identify delay time of millisecond blasting in Zijinshan open-pit mine. According to the identification results, the blasting parameters were optimized for controlling the blast-induced vibration and reducing the large block ratio. The field data showed that the velocity peak of ground vibration was reduced by more than 30%under almost the same maximum charge per delay by the optimization of delay time and detonating detonators. Combining with slag-remaining blasting and burden optimization of the first row, the large block ratio was reduced to less than 3%. The research results proved that the identification method based on HHT was feasible to optimize the blasting design. The identification method is also of certain reference value for design optimization of other similar blasting projects.展开更多
The accuracy of conventional time delay estimation (TDE) algorithms is limited by the sampling interval. A novel algorithm of subsample TDE suitable for widehand signals is presented to improve the accuracy. This al...The accuracy of conventional time delay estimation (TDE) algorithms is limited by the sampling interval. A novel algorithm of subsample TDE suitable for widehand signals is presented to improve the accuracy. This algorithm applies periodogram and parabolic interpolation to the cross correlation spectrum of band limited stochastic signals, and can obtain a continuous time delay estimator. Simulations are carried out to compare the performance of the proposed algorithm with that of other subsample TDE algorithms. Results show that the proposed algorithm outperforms other algorithms and reachs the Cramer-Rao lower bound (CRLB) at a high signal- to-noise ratio. For the wideband characteristic and the randomness of the transmitting signal, the proposed algo- rithm is suitable for the low probability of intercept radars.展开更多
A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure...A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy.展开更多
By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed w...By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.展开更多
A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obta...A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.展开更多
Underwater acoustic communication based on Pattern Tune Delay Shift Coding (PDS) communication scheme is studied. The time delay shift values of the pattern are used to encode the digital information in the PDS sche...Underwater acoustic communication based on Pattern Tune Delay Shift Coding (PDS) communication scheme is studied. The time delay shift values of the pattern are used to encode the digital information in the PDS scheme, which belongs to the Pulse Position Modulation (PPM). The duty cycle of the PDS scheme is small, so it can economize the power for communication. By use of different patterns for code division and different frequencies for channel division, the communication system is capable of mitigating the inter-symbol interference (ISI) caused by the muhipath channel. The data rate of communication is 1000 bits/s at 8 kHz bandwidth. The receiver separates the channels by means of bandpass filters, and performs decoding by 4 copy-correlators to estimate the time delay shift value. Based on the theoretical analysis and numerical simulations, the PDS scheme is shown to be a robust and effective approach for underwater acoustic communication.展开更多
In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are s...In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.展开更多
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backsteppi...This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.展开更多
Astrodynamical space test of relativity using optical devices optimized for gravitation wave detection (ASTROD- GW) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection ...Astrodynamical space test of relativity using optical devices optimized for gravitation wave detection (ASTROD- GW) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection sensitivity is shifted 52 times toward larger wavelength compared with that of laser interferometer space antenna (LISA). The mission orbits of the three spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun–Earth Lagrange points L3, L4, and L5. The three spacecrafts range interferometrically with one another with an arm length of about 260 million kilometers. In order to attain the required sensitivity for ASTROD-GW, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise, etc. For suppressing laser frequency noise, we need to use time delay interferometry (TDI) to match the two different optical paths (times of travel). Since planets and other solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the TDI, we simulate the time delay numerically using CGC 2.7 (here, CGC stands for center for gravitation and cosmology) ephemeris framework. To conform to the ASTROD-GW planning, we work out a set of 20-year optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and calculate the differences in optical path in the first and second generation TDIs separately for one-detector case. In our optimized mission orbits of 20 years, changes of arm lengths are less than 0.0003 AU; the relative Doppler velocities are all less than 3m/s. All the second generation TDI for one-detector case satisfies the ASTROD-GW requirement.展开更多
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)in part by the Natural Science Foundation of CQCSTC (Grant Nos. 2009BA2024 and cstc2011jjA1320)in part by the State Key Laboratory of Power Transmission Equipment & System Securityand New Technology, Chongqing University (Grant No. 2007DA10512711206)
文摘Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.
基金partly supported by the National Key Research and Development Plan Intelligent Robot Key Project(2018YFB1308000)the Key Research and Development Program of Zhejiang Province(2020C01109)。
文摘The stabilization problem of distributed proportional-integral-derivative(PID)controllers for general first-order multi-agent systems with time delay is investigated in the paper.The closed-loop multi-input multi-output(MIMO)framework in frequency domain is firstly introduced for the multi-agent system.Based on the matrix theory,the whole system is decoupled into several subsystems with respect to the eigenvalues of the Laplacian matrix.Considering that the eigenvalues may be complex numbers,the consensus problem of the multi-agent system is transformed into the stabilizing problem of all the subsystems with complex coefficients.For each subsystem with complex coefficients,the range of admissible proportional gains is analytically determined.Then,the stabilizing region in the space of integral gain and derivative gain for a given proportional gain value is also obtained in an analytical form.The entire stabilizing set can be determined by sweeping proportional gain in the allowable range.The proposed method is conducted for general first-order multi-agent systems under arbitrary topology including undirected and directed graph topology.Besides,the results in the paper provide the basis for the design of distributed PID controllers satisfying different performance criteria.The simulation examples are presented to check the validity of the proposed control strategy.
基金National Science Foundation of China (60274032) SRFDP (20030248040) SRSP (04QMH1405)
文摘Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.
基金Supported by Funding for the National Natural Science Foundation of China(12201557,12001483,61807006)。
文摘Biologically,because of the impact of reproduction period and nonlocal dispersal of HIV-infected cells,time delay and spatial heterogeneity should be considered.In this paper,we establish an HIV infection model with nonlocal dispersal and infection age.Moreover,applying the theory of Fourier transformation and von Foerster rule,we transform the model to an integrodifferential equation with nonlocal time delay and dispersal.The well-posedness,positivity,and boundedness of the solution for the model are studied.
基金supported by the National Natural Science Foundation of China (No.51974334)Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ107)local efficient reform and development funds for personnel training projects supported by the central government,Heilongjiang Postdoctoral Scientific Research Fund (LBH-Q21012)。
文摘During air injection into an oil reservoir,an oxidation reaction generates some heat to raise the reservoir temperature.When the reservoir temperature reaches an ignition temperature,spontaneous ignition occurs.There is a time delay from the injection to ignition.There are mixed results regarding the feasibility of spontaneous ignition in real-field projects and in laboratory experiments.No analytical model is available in the literature to estimate the oxidation time required to reach spontaneous ignition with heat loss.This paper discusses the feasibility of spontaneous ignition from theoretical points and experimental and field project observations.An analytical model considering heat loss is proposed.Analytical models with and without heat loss investigate the factors that affect spontaneous ignition.Based on the discussion and investigations,we find that it is more difficult for spontaneous ignition to occur in laboratory experiments than in oil reservoirs;spontaneous ignition is strongly affected by the initial reservoir temperature,oil activity,and heat loss;spontaneous ignition is only possible when the initial reservoir temperature is high,the oil oxidation rate is high,and the heat loss is low.
基金support and funding from the National Natural Science Foundation of China (No.52174047)Sinopec Project (No.P21063-3)。
文摘In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.
文摘A study was conducted on the effect of time delay and structural parameters on the vibration reduction of a time delayed coupled negative stiffness dynamic absorber in nonlinear vibration reduction systems. Taking dynamic absorbers with different structural and control parameters as examples, the effects of third-order nonlinear coefficients, time-delay control parameters, and negative stiffness coefficients on reducing the replication of the main system were discussed. The nonlinear dynamic absorber has a very good vibration reduction effect at the resonance point of the main system and a nearby area, and when 1 increases to a certain level, the stable region of the system continues to increase. The amplitude curve of the main system of a nonlinear dynamic absorber will generate Hop bifurcation and saddle node bifurcation in the region far from the resonance point, resulting in almost periodic motion and jumping phenomena in the system. For nonlinear dynamic absorbers with determined structural parameters, time-delay feedback control can be adopted to control the amplitude of the main system. For different negative stiffness coefficients, there exists a minimum damping point for the amplitude of the main system under the determined system structural parameters and time-delay feedback control parameters.
文摘This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.
基金Project(2013BAB02B05)supported by the National 12th Five-Year Science and Technology Supporting Plan of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University of ChinaProject(2016zzts094)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘The accurate identification of delay time in millisecond blasting plays an important role in the optimization of blasting design and reduction of vibration effect. Through a case study of a surge shaft blasting project, the capability of the EMD (empirical mode decomposition) method in identifying the delay time of short millisecond blasting with precise initiation was compared with the instantaneous energy method based on Hilbert-Huang transform (HHT). The recognition rate of the EMD method was more than 80%, while the instantaneous energy method was less than 25%. By analyzing the instantaneous energy of single-hole blasting signal, it was found that the instantaneous energy method was adaptable to millisecond blasting with delay time longer than half of the energy peak period. The EMD method was used to identify delay time of millisecond blasting in Zijinshan open-pit mine. According to the identification results, the blasting parameters were optimized for controlling the blast-induced vibration and reducing the large block ratio. The field data showed that the velocity peak of ground vibration was reduced by more than 30%under almost the same maximum charge per delay by the optimization of delay time and detonating detonators. Combining with slag-remaining blasting and burden optimization of the first row, the large block ratio was reduced to less than 3%. The research results proved that the identification method based on HHT was feasible to optimize the blasting design. The identification method is also of certain reference value for design optimization of other similar blasting projects.
基金Supported by the National Mobile Communications Research Laboratory Foundation (N200902)~~
文摘The accuracy of conventional time delay estimation (TDE) algorithms is limited by the sampling interval. A novel algorithm of subsample TDE suitable for widehand signals is presented to improve the accuracy. This algorithm applies periodogram and parabolic interpolation to the cross correlation spectrum of band limited stochastic signals, and can obtain a continuous time delay estimator. Simulations are carried out to compare the performance of the proposed algorithm with that of other subsample TDE algorithms. Results show that the proposed algorithm outperforms other algorithms and reachs the Cramer-Rao lower bound (CRLB) at a high signal- to-noise ratio. For the wideband characteristic and the randomness of the transmitting signal, the proposed algo- rithm is suitable for the low probability of intercept radars.
文摘A neural network Smith predictive control strategy is proposed to deal with inpu t and feedback time delays in telerobot systems. The delay time is assumed to b e invariant and unknown. The proposed control structure consists of a slave syst em and a master controller. In the slave system, a recurrent neural network (RNN ) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant, which is used to linearize the slave s ystem. The master controller is a Smith predictor for the linearized slave syste m, which provides prediction and maintains the desirable tracking performance. S tability propriety is guaranteed based on the Lyapunov method. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of th e proposed control strategy.
文摘By establishing equivalent fixed point theorem, the boundary value problems of p Laplace equations with finite time delay are studied. It’s the first time that the functional differential equation is discussed with p Laplacian. The topological degree and fixed point theorem on cone are used to prove the existence of solution and positive solution. The conditions are all easy to check.
文摘A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.
文摘Underwater acoustic communication based on Pattern Tune Delay Shift Coding (PDS) communication scheme is studied. The time delay shift values of the pattern are used to encode the digital information in the PDS scheme, which belongs to the Pulse Position Modulation (PPM). The duty cycle of the PDS scheme is small, so it can economize the power for communication. By use of different patterns for code division and different frequencies for channel division, the communication system is capable of mitigating the inter-symbol interference (ISI) caused by the muhipath channel. The data rate of communication is 1000 bits/s at 8 kHz bandwidth. The receiver separates the channels by means of bandpass filters, and performs decoding by 4 copy-correlators to estimate the time delay shift value. Based on the theoretical analysis and numerical simulations, the PDS scheme is shown to be a robust and effective approach for underwater acoustic communication.
基金supported by the National Natural Science Foundation of China(61273200,61273152,61202111,61304052,51407088)the Science Foundation of Education Office of Shandong Province of China(ZR2011FM07,BS2015DX018)
文摘In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.
基金This work was supported by the National Natural Science Foundation of China (No. 60374015) and Shaanxi Province Nature Science Foundation(No. 2003A15).
文摘This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10778710 and 10875171)
文摘Astrodynamical space test of relativity using optical devices optimized for gravitation wave detection (ASTROD- GW) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection sensitivity is shifted 52 times toward larger wavelength compared with that of laser interferometer space antenna (LISA). The mission orbits of the three spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun–Earth Lagrange points L3, L4, and L5. The three spacecrafts range interferometrically with one another with an arm length of about 260 million kilometers. In order to attain the required sensitivity for ASTROD-GW, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise, etc. For suppressing laser frequency noise, we need to use time delay interferometry (TDI) to match the two different optical paths (times of travel). Since planets and other solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the TDI, we simulate the time delay numerically using CGC 2.7 (here, CGC stands for center for gravitation and cosmology) ephemeris framework. To conform to the ASTROD-GW planning, we work out a set of 20-year optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and calculate the differences in optical path in the first and second generation TDIs separately for one-detector case. In our optimized mission orbits of 20 years, changes of arm lengths are less than 0.0003 AU; the relative Doppler velocities are all less than 3m/s. All the second generation TDI for one-detector case satisfies the ASTROD-GW requirement.