To detect high frequency (HF) first-order sea echo spectra contaminated with ships, ionosphere interference, and other, a new characteristic-knowledge-aided detection method is proposed. With 2-D image features in r...To detect high frequency (HF) first-order sea echo spectra contaminated with ships, ionosphere interference, and other, a new characteristic-knowledge-aided detection method is proposed. With 2-D image features in range-Doppler spectrum, the trend of first-order sea echoes is extracted as indicative information by a multi-scale filter. Detection rules for both single and splitting first-order sea echoes are given based on the characteristic knowledge combining the indicative information with the global characteristics such as amplitude, symmetry, continuity, etc. Compared with the classical algorithms, the proposed method can detect and locate the first-order sea echo in the HF band more accurately especially in the environment with targets/clutters smearing. Experiments with real data verify the validity of the algorithm.展开更多
This paper has proposed a new modelling and simulating technique for the echo of the semi-active radar seeker against the sea skimming target. The echo modelling is based on the electromagnetic scattering mechanisms. ...This paper has proposed a new modelling and simulating technique for the echo of the semi-active radar seeker against the sea skimming target. The echo modelling is based on the electromagnetic scattering mechanisms. A modified Four-path model based on the radar detection scene is used to describe the multipath scattering between the target and rough sea surface. A Facet-based Small Slope Approximation (FBSSA) method is employed to calculate the scattering from the sea surface. The Physical Optics (PO) and the Equivalent Edge Current (EEC) Method is used to calculate the target scattering. In the echo simulations. The results present the original echo and the echo processed by the signal processing procedures, where the clutter and multipath effect can be observed.展开更多
The in situ calibration of Scientific Echo Sounders(SESs)in the Southern Ocean is crucial for accurate assessments of Antarctic krill and fishery biomasses.Because of the occurrence of strong winds,waves,and sea ice c...The in situ calibration of Scientific Echo Sounders(SESs)in the Southern Ocean is crucial for accurate assessments of Antarctic krill and fishery biomasses.Because of the occurrence of strong winds,waves,and sea ice coverage in most seasons,SES calibration is usually difficult to perform in the Southern Ocean.Accordingly,it is essential to identify potential sites suitable for SES calibration in the marginal seas around Antarctica to successfully calibrate SESs in the Southern Ocean.Using synthetic analyses of the wind,surface current,and sea ice concentration in the targeted seas,we found that the polynya in the southeast Prydz Bay,close to the Chinese Zhongshan Station,is an ideal location to calibrate SESs based on its weak wind and surface current and its ice-free coverage during Antarctic cruises.Calibrations of the SESs onboard the research vessels of Xuelong and Xuelong 2 during the 36th and 37th Chinese National Antarctic Research Expeditions indicate that this location is a potential suitable site for conducting SES calibration with the vessel in a drifting mode.展开更多
Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is ...Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is unable to get both high temporal and spatial resolution. The InSAR altimetry system using InSAR altimeter instead of nadir radar altimeter is an improvement which can get both high cross-track and along-track resolution and wide swath. However, the conventional SAR interferometry only can achieve meter level height accuracy. This paper focuses on a method of radar echo-tracking for InSAR altimeter system in order to correct the slant range measurements and finally to improve the height measurement accuracy to several centimeters' level. Radar slant range (from observed pixels to radar antenna) estimation error affects the height measurement accuracy badly, nevertheless not considered in the conventional SAR interferometry. The proposed method is ameliorated based on the traditional echo-model used in nadir radar altimeter system, focusing on the echo signals from observed pixels with different incident angles. Simulations of sea surface height measurements are performed in the last part of this paper, and the conclusions are drawn that, with corrected slant range, the accuracy of InSAR altimetry can be much better than the conventional SAR interferometry.展开更多
Between June 2015 and June 2017,two pressure-recording inverted echo sounders(PIESs)and five current and pressure-recording inverted echo sounders(CPIESs)deployed along a section across the Kerama Gap acquired a datas...Between June 2015 and June 2017,two pressure-recording inverted echo sounders(PIESs)and five current and pressure-recording inverted echo sounders(CPIESs)deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability(Pbot21).The Pbot21,which was particularly strong from July-December 2016,was coherent with wind stress curl(WSC)on the continental shelf of the East China Sea(ECS)with a squared coherence of 0.65 for a 3-day time lag.A barotropic ocean model demonstrated the generation,propagation,and dissipation of Pbot21.The modeled results show that the Pbot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain(RIC),while deep ocean WSC could not induce such variability.On the continental shelf,the Pbot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction.The detection of Pbot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf.The Pbot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pbot21generated northeast of the Changjiang Estuary was not.展开更多
文摘To detect high frequency (HF) first-order sea echo spectra contaminated with ships, ionosphere interference, and other, a new characteristic-knowledge-aided detection method is proposed. With 2-D image features in range-Doppler spectrum, the trend of first-order sea echoes is extracted as indicative information by a multi-scale filter. Detection rules for both single and splitting first-order sea echoes are given based on the characteristic knowledge combining the indicative information with the global characteristics such as amplitude, symmetry, continuity, etc. Compared with the classical algorithms, the proposed method can detect and locate the first-order sea echo in the HF band more accurately especially in the environment with targets/clutters smearing. Experiments with real data verify the validity of the algorithm.
文摘This paper has proposed a new modelling and simulating technique for the echo of the semi-active radar seeker against the sea skimming target. The echo modelling is based on the electromagnetic scattering mechanisms. A modified Four-path model based on the radar detection scene is used to describe the multipath scattering between the target and rough sea surface. A Facet-based Small Slope Approximation (FBSSA) method is employed to calculate the scattering from the sea surface. The Physical Optics (PO) and the Equivalent Edge Current (EEC) Method is used to calculate the target scattering. In the echo simulations. The results present the original echo and the echo processed by the signal processing procedures, where the clutter and multipath effect can be observed.
基金This study was financially supported by National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Grant nos.IRASCC IRASCC 01-01,01-02,02-01)was supported by the National Key R&D Program of China(Grant nos.2017YFC0306003 and 2016YFB0501703)the National Natural Science Foundation of China(Grant nos.41876111,41706115,and 41806214).
文摘The in situ calibration of Scientific Echo Sounders(SESs)in the Southern Ocean is crucial for accurate assessments of Antarctic krill and fishery biomasses.Because of the occurrence of strong winds,waves,and sea ice coverage in most seasons,SES calibration is usually difficult to perform in the Southern Ocean.Accordingly,it is essential to identify potential sites suitable for SES calibration in the marginal seas around Antarctica to successfully calibrate SESs in the Southern Ocean.Using synthetic analyses of the wind,surface current,and sea ice concentration in the targeted seas,we found that the polynya in the southeast Prydz Bay,close to the Chinese Zhongshan Station,is an ideal location to calibrate SESs based on its weak wind and surface current and its ice-free coverage during Antarctic cruises.Calibrations of the SESs onboard the research vessels of Xuelong and Xuelong 2 during the 36th and 37th Chinese National Antarctic Research Expeditions indicate that this location is a potential suitable site for conducting SES calibration with the vessel in a drifting mode.
基金funded by the National Nature Science Foundations of China(41404019,41674026)the open fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(CSUWX-A-KJ-2016-044)
文摘Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is unable to get both high temporal and spatial resolution. The InSAR altimetry system using InSAR altimeter instead of nadir radar altimeter is an improvement which can get both high cross-track and along-track resolution and wide swath. However, the conventional SAR interferometry only can achieve meter level height accuracy. This paper focuses on a method of radar echo-tracking for InSAR altimeter system in order to correct the slant range measurements and finally to improve the height measurement accuracy to several centimeters' level. Radar slant range (from observed pixels to radar antenna) estimation error affects the height measurement accuracy badly, nevertheless not considered in the conventional SAR interferometry. The proposed method is ameliorated based on the traditional echo-model used in nadir radar altimeter system, focusing on the echo signals from observed pixels with different incident angles. Simulations of sea surface height measurements are performed in the last part of this paper, and the conclusions are drawn that, with corrected slant range, the accuracy of InSAR altimetry can be much better than the conventional SAR interferometry.
基金The SIO group was supported by the National Natural Science Foundation of China under contract Nos41920104006,41806020,41776107 and 41906024the National Programme on Global Change and Air–Sea Interaction under contract No.GASIIPOVAI-01–02+4 种基金the Scientific Research Fund of SIO under contract Nos JZ2001 and JT1801the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,SIO under contract Nos SOEDZZ1901 and SOEDZZ1903the Kagoshima University group was supported by Core Research for Evolutional Science and Technology of the Japan Science and Technology CorporationJSPS KAKENHI under contract Nos JP15H05821 and JP15H03725supported by the“Study on Air–Sea Interaction and Process of Rapidly Intensifying Typhoon in the Northwestern Pacific”project funded by the Ministry of Oceans and Fisheries,Korea。
文摘Between June 2015 and June 2017,two pressure-recording inverted echo sounders(PIESs)and five current and pressure-recording inverted echo sounders(CPIESs)deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability(Pbot21).The Pbot21,which was particularly strong from July-December 2016,was coherent with wind stress curl(WSC)on the continental shelf of the East China Sea(ECS)with a squared coherence of 0.65 for a 3-day time lag.A barotropic ocean model demonstrated the generation,propagation,and dissipation of Pbot21.The modeled results show that the Pbot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain(RIC),while deep ocean WSC could not induce such variability.On the continental shelf,the Pbot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction.The detection of Pbot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf.The Pbot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pbot21generated northeast of the Changjiang Estuary was not.