期刊文献+
共找到402篇文章
< 1 2 21 >
每页显示 20 50 100
Unsupervised Linear Discriminant Analysis
1
作者 唐宏 方涛 +1 位作者 施鹏飞 唐国安 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期40-42,共3页
An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-neares... An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective. 展开更多
关键词 linear discriminant analysis(lda) unsupervised learning neighbor graph
下载PDF
Analysis and Experiments on Two Linear Discriminant Analysis Methods
2
作者 Xu Yong Jin Zhong +2 位作者 Yang Jingyu Tang Zhengmin Zhao Yingnan 《工程科学(英文版)》 2006年第3期37-47,共11页
Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector i... Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector in an n-k+1 dimensional subspace, while they are subject to their respective constraints. Evidenced by strict demonstration, it is clear that in essence ULDA vectors are the covariance-orthogonal vectors of the corresponding eigen-equation. So, the algorithms for the covariance-orthogonal vectors are equivalent to the original algorithm of ULDA, which is time-consuming. Also, it is first revealed that the Fisher criterion value of each FSLDA vector must be not less than that of the corresponding ULDA vector by theory analysis. For a discriminant vector, the larger its Fisher criterion value is, the more powerful in discriminability it is. So, for FSLDA vectors, corresponding to larger Fisher criterion values is an advantage. On the other hand, in general any two feature components extracted by FSLDA vectors are statistically correlated with each other, which may make the discriminant vectors set at a disadvantageous position. In contrast to FSLDA vectors, any two feature components extracted by ULDA vectors are statistically uncorrelated with each other. Two experiments on CENPARMI handwritten numeral database and ORL database are performed. The experimental results are consistent with the theory analysis on Fisher criterion values of ULDA vectors and FSLDA vectors. The experiments also show that the equivalent algorithm of ULDA, presented in this paper, is much more efficient than the original algorithm of ULDA, as the theory analysis expects. Moreover, it appears that if there is high statistical correlation between feature components extracted by FSLDA vectors, FSLDA will not perform well, in spite of larger Fisher criterion value owned by every FSLDA vector. However, when the average correlation coefficient of feature components extracted by FSLDA vectors is at a low level, the performance of FSLDA are comparable with ULDA. 展开更多
关键词 fisher判据 Foley-Sammon线性判别分析 相关系数 不相关线性判别分析 判别向量
下载PDF
A computer aided detection framework for mammographic images using fisher linear discriminant and nearest neighbor classifier
3
作者 Memuna Sarfraz Fadi Abu-Amara Ikhlas Abdel-Qader 《Journal of Biomedical Science and Engineering》 2012年第6期323-329,共7页
Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified... Today, mammography is the best method for early detection of breast cancer. Radiologists failed to detect evident cancerous signs in approximately 20% of false negative mammograms. False negatives have been identified as the inability of the radiologist to detect the abnormalities due to several reasons such as poor image quality, image noise, or eye fatigue. This paper presents a framework for a computer aided detection system that integrates Principal Component Analysis (PCA), Fisher Linear Discriminant (FLD), and Nearest Neighbor Classifier (KNN) algorithms for the detection of abnormalities in mammograms. Using normal and abnormal mammograms from the MIAS database, the integrated algorithm achieved 93.06% classification accuracy. Also in this paper, we present an analysis of the integrated algorithm’s parameters and suggest selection criteria. 展开更多
关键词 Principal COMPONENT analysis fisher linear discriminant Nearest NEIGHBOR CLASSIFIER
下载PDF
Discriminant Analysis for Human Arm Motion Prediction and Classifying
4
作者 Mohammed Z. Al-Faiz Sarmad H. Ahmed 《Intelligent Control and Automation》 2013年第1期26-31,共6页
The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the clas... The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the classification of upper arm motions;where this algorithm was mainly used in face recognition and voice recognition. Also a comparison between the Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (k-NN) algorithm is made for the classification of upper arm motions. The obtained results demonstrate superior performance of LDA to k-NN. The classification results give very accurate classification with very small classification errors. This paper is organized as follows: Muscle Anatomy, Data Classification Methods, Theory of Linear Discriminant Analysis, k-Nearest Neighbor (kNN) Algorithm, Modeling of EMG Pattern Recognition, EMG Data Generator, Electromyography Feature Extraction, Implemented System Results and Discussions, and finally, Conclusions. The proposed structure is simulated using MATLAB. 展开更多
关键词 linear discriminant analysis (lda) k-Nearest NEIGHBOR (k-NN)
下载PDF
基于FastICA-LDA的光伏并网逆变器故障诊断
5
作者 张磊 余茂全 夏远洋 《新余学院学报》 2024年第5期40-48,共9页
为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型... 为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型输出逆变器工作状态编号,从而实现单管开路定位。经过MATLAB仿真验证表明,所提方法对光伏并网逆变器故障的诊断效果较好。 展开更多
关键词 并网逆变器 开路故障 频域特征 快速独立成分分析 线性判别分析
下载PDF
基于LDA-MURE模型的背景音乐自适应推荐方法
6
作者 杨静 《信息技术》 2024年第6期136-140,146,共6页
用户的情绪状态不同,需要的背景音乐也不同,因此提出基于LDA-MURE模型的背景音乐自适应推荐方法。提取背景音乐的音频特征和社会化标签,通过Fisher线性判别分析方法融合上述数据的特征,结合投影变换方法获得不同类别背景音乐的类内离散... 用户的情绪状态不同,需要的背景音乐也不同,因此提出基于LDA-MURE模型的背景音乐自适应推荐方法。提取背景音乐的音频特征和社会化标签,通过Fisher线性判别分析方法融合上述数据的特征,结合投影变换方法获得不同类别背景音乐的类内离散度和类间离散度。通过现代心理学分析人类情绪的节律周期变化,在此基础上判断用户当前的情绪状态。最后在LDA模型的基础上构建LDA-MURE模型,为用户推荐不同类别的背景音乐。实验结果表明,所提方法的MEA指标值较低、P@N指标值较高、用户满意度较高。 展开更多
关键词 lda-MURE模型 fisher线性判别分析方法 特征提取 背景音乐推荐 情绪状态
下载PDF
基于PCA-LDA-SVM算法的茶小绿叶蝉识别 被引量:2
7
作者 吴鹏 刘金兰 《中国农机化学报》 北大核心 2024年第1期295-300,共6页
为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而... 为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而减少后续的计算时间;再利用线性判别分析(LDA)寻找特征数据的最优投影空间,使类内散布距离最小,类间散布距离最大,进一步提高识别的准确率和精确度;最后,利用支持向量机(SVM)分类器进行分类识别。试验结果表明,PCA-LDA-SVM模型识别准确率达96%,精确度达100%,召回率达92%,整体识别性能优于SVM,BP,KNN,PCA-SVM模型,具备一定的理论价值和参考意义。 展开更多
关键词 茶小绿叶蝉 病虫害识别 主成分分析(PCA) 线性判别分析(lda) 支持向量机(SVM)
下载PDF
基于LDA-IBES-RELM的光伏阵列故障诊断方法
8
作者 邹凯 曾宪文 +1 位作者 王洋 高桂革(指导) 《上海电机学院学报》 2024年第1期1-6,19,共7页
针对光伏阵列故障诊断准确率偏低的问题,提出了一种基于改进秃鹰搜索算法(IBES)优化正则化极限学习机(RELM)的故障诊断方法。首先在Simulink建立光伏阵列仿真模型,模拟典型故障并提取故障特征数据,同时利用线性判别分析(LDA)对特征量降... 针对光伏阵列故障诊断准确率偏低的问题,提出了一种基于改进秃鹰搜索算法(IBES)优化正则化极限学习机(RELM)的故障诊断方法。首先在Simulink建立光伏阵列仿真模型,模拟典型故障并提取故障特征数据,同时利用线性判别分析(LDA)对特征量降维作为故障诊断模型的输入;其次利用Logistic混沌映射、Levy飞行策略和柯西高斯变异扰动策略对秃鹰算法进行改进;最后将IBES用于对RELM的隐层参数寻优。实验结果表明:LDA-IBES-RELM模型与BES-RELM、IBES-RELM模型对比,得到的故障诊断准确率为97.71%,优于其他两种模型,验证了LDA-IBESRELM模型用于光伏阵列故障诊断的有效性和实用性。 展开更多
关键词 正则化极限学习机 光伏阵列 故障诊断 改进秃鹰搜索算法 线性判别分析
下载PDF
An Optimization Criterion for Generalized Marginal Fisher Analysis on Undersampled Problems
9
作者 Wu-Yi Yang Sheng-Xing Liu +1 位作者 Tai-Song Jin Xiao-Mei Xu 《International Journal of Automation and computing》 EI 2011年第2期193-200,共8页
Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effec... Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effectively overcome the limitation of linear discriminant analysis (LDA) due to data distribution assumption and available projection directions.However,MFA confronts the undersampled problems.Generalized marginal Fisher analysis (GMFA) based on a new optimization criterion is presented,which is applicable to the undersampled problems.The solutions to the proposed criterion for GMFA are derived,which can be characterized in a closed form.Among the solutions,two specific algorithms,namely,normal MFA (NMFA) and orthogonal MFA (OMFA),are studied,and the methods to implement NMFA and OMFA are proposed.A comparative study on the undersampled problem of face recognition is conducted to evaluate NMFA and OMFA in terms of classification accuracy,which demonstrates the effectiveness of the proposed algorithms. 展开更多
关键词 linear discriminant analysis lda dimension reduction marginal fisher analysis (MFA) normal MFA (NMFA) orthogonal MFA (OMFA).
下载PDF
Multispectral Imaging in Combination with Multivariate Analysis Discriminates Selenite Induced Cataractous Lenses from Healthy Lenses of Sprague-Dawley Rats
10
作者 Peter Osei-Wusu Adueming Moses Jojo Eghan +5 位作者 Benjamin Anderson Samuel Kyei Jerry Opoku-Ansah Charles L. Y. Amuah Samuel Sonko Sackey Paul Kingsley Buah-Bassuah 《Open Journal of Biophysics》 2017年第3期145-156,共12页
Cataracts are the leading cause of blindness worldwide. Current methods for discriminating cataractous lenses from healthy lenses of Sprague-Dawley rats during preclinical studies are based on either histopathological... Cataracts are the leading cause of blindness worldwide. Current methods for discriminating cataractous lenses from healthy lenses of Sprague-Dawley rats during preclinical studies are based on either histopathological or clinical assessments which are weakened by subjectivity. In this work, both cataractous and healthy lens tissues of Sprague-Dawley rats were studied using multispectral imaging technique in combination with multivariate analysis. Multispectral images were captured in transmission, reflection and scattering modes. In all, five spectral bands were found to be markers for discriminating cataractous lenses from healthy lenses;470 nm and 625 nm discriminated in reflection mode whereas 435 nm, 590 nm and 700 nm discriminated in transmission mode. With Fisher’s Linear discriminant analysis, the midpoints for classifying cataractous from healthy lenses were found to be 14.718 × 10&minus;14 and 3.2374 × 10&minus;14 for the two spectra bands in the reflection mode and the three spectral bands in the transmission mode respectively. Images in scattering mode did not show significant discrimination. These spectral bands in reflection and transmission modes may offer potential diagnostic markers for discriminating cataractous lenses from healthy lenses thereby promising multispectral imaging applications for characterizing cataractous and healthy lenses. 展开更多
关键词 MULTISPECTRAL Imaging Cataractous Lenses Principal Component analysis fisher’s linear discriminant analysis
下载PDF
DISCRIMINATIVE ANALYSIS OF FUNCTIONAL NEAR-INFRARED SPECTROSCOPY SIGNALS FOR DEVELOPMENT OF NEUROIMAGING BIOMARKERS OF ELDERLY DEPRESSION
11
作者 YE ZHU TIANZI JIANG +1 位作者 YUAN ZHOU LISHA ZHAO 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2010年第1期69-74,共6页
Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depress... Functional near-infrared spectroscopy(fNIRS)is a neuroimaging technology which is suitable for psychiatric patients.Several fNIRS studies have found abnormal brain activations during cognitive tasks in elderly depression.In this paper,we proposed a discriminative model of multivariate pattern classification based on fNIRS signals to distinguish elderly depressed patients from healthy controls.This model used the brain activation patterns during a verbal fluency task as features of classification.Then Pseudo-Fisher Linear Discriminant Analysis was performed on the feature space to generate discriminative model.Using leave-one-out(LOO)cross-validation,our results showed a correct classification rate of 88%.The discriminative model showed its ability to identify people with elderly depression and suggested that fNIRS may be an efficient clinical tool for diagnosis of depression.This study may provide the first step for the development of neuroimaging biomarkers based on fNIRS in psychiatric disorders. 展开更多
关键词 Functional near-infrared spectroscopy(fNIRS) fisher linear discriminant analysis(Flda) DEPRESSION
下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:2
12
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备集成经验模态分解 改进多尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
下载PDF
基于改进DFA和LDA的永磁同步电机机械故障检测 被引量:7
13
作者 赵嗣芳 宋强 +1 位作者 张艳明 张伟 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第1期61-69,共9页
为提高故障检测的精度,研究了变转速工况下永磁同步电机的机械故障检测方法.首先,分析了电机轴承、转子偏心及其复合故障的振动特性;其次,采用Vold-Kalman算法对故障特征分量进行跟踪提取,并通过信号重构消除转速变化对故障特征分量的影... 为提高故障检测的精度,研究了变转速工况下永磁同步电机的机械故障检测方法.首先,分析了电机轴承、转子偏心及其复合故障的振动特性;其次,采用Vold-Kalman算法对故障特征分量进行跟踪提取,并通过信号重构消除转速变化对故障特征分量的影响;提出一种基于改进去趋势波动分析和线性判别式分析的机械故障检测方法,实现对重构信号的故障特征提取和故障检测;最后,对所提出故障检测方法的有效性进行实验验证.实验结果表明文中所提出方法的故障检测精度为88%. 展开更多
关键词 永磁同步电机 机械故障 故障检测 去趋势波动分析 线性判别式分析
下载PDF
突发事件网络舆情反转的PCA-LDA-LSSVM预测模型 被引量:2
14
作者 赵琳琳 温国锋 杨永清 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第8期186-190,共5页
为有效引导与控制突发事件网络舆情,建立科学的预警机制,提出突发事件网络舆情反转的主成分分析(PCA)-线性判别分析(LDA)-最小二乘支持向量机(LSSVM)预测模型。利用PCA提取具有相关性的影响因素主成分,利用LDA方法分析相互独立的影响因... 为有效引导与控制突发事件网络舆情,建立科学的预警机制,提出突发事件网络舆情反转的主成分分析(PCA)-线性判别分析(LDA)-最小二乘支持向量机(LSSVM)预测模型。利用PCA提取具有相关性的影响因素主成分,利用LDA方法分析相互独立的影响因素和主成分对突发事件网络舆情反转的影响,并将LDA分析后的影响因素作为LSSVM的输入向量,预测突发事件网络舆情反转,通过选取33组突发事件网络舆情数据进行试验研究。研究结果表明:影响因素重要性由大到小依次为网民情感正倾向、网民情感负倾向、舆情事件性质、舆情传播形式、舆情首发主体权威性;当网民情感正倾向明显减少、网民情感负倾向明显增加时,应采取措施引导舆情发展。 展开更多
关键词 突发事件 网络舆情 主成分分析(PCA) 线性判别分析(lda) 最小二乘支持向量机(LSSVM)
下载PDF
基于表面肌电信号的LDA-BPNN双臂手势识别算法 被引量:1
15
作者 王金玮 曹乐 +2 位作者 阚秀 张文艳 孟壮壮 《传感器与微系统》 CSCD 北大核心 2023年第6期158-160,168,共4页
针对基于表面肌电(sEMG)信号的双臂手势识别率不高的问题,提出一种利用线性判别分析(LDA)方法结合反向传播神经网络(BPNN)算法的手势识别方法。首先,对采集的双臂sEMG信号进行小波阈值去噪的预处理,提取信号中的均方根值、绝对值均值、... 针对基于表面肌电(sEMG)信号的双臂手势识别率不高的问题,提出一种利用线性判别分析(LDA)方法结合反向传播神经网络(BPNN)算法的手势识别方法。首先,对采集的双臂sEMG信号进行小波阈值去噪的预处理,提取信号中的均方根值、绝对值均值、过零点次数、立方均值、波长、平均绝对值斜率共6种特征;再通过LDA对高维特征集进行降维处理;最后,利用BPNN建立相应的手势模型并识别。实验结果表明:在双臂手势动作的背景下,该识别算法效率较高,识别准确率高达92.7%,能够有效实现双臂手势识别。 展开更多
关键词 表面肌电信号 小波阈值去噪 线性判别分析方法 反向传播神经网络 手势识别
下载PDF
Texture Analysis and Characteristic Identification About Plaque Tissues of IVUS 被引量:1
16
作者 DONG Hai-yan LI Hong 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第2期47-55,共9页
Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the graysc... Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the grayscale differences of them are not so apparent.In this paper a new textural characteristic space vector was formed by the combination of Co-occurrence Matrix and fraction methods.The vector was projected to the new characteristic space after multiplied by a projective matrix which can best classify those plaques according to the Fisher linear discriminant.Then the classification was completed in the new vector space.Experimental results found that the veracity of this classification could reach up to 88%,which would be an accessorial tool for doctors to identify each plaque. 展开更多
关键词 intravascular ultrasound statistical texture fractional texture fisher linear discriminant analysis
下载PDF
基于LDA降维和BP神经网络的手写数字识别
17
作者 刘佳悦 《信息与电脑》 2023年第14期187-189,193,共4页
手写数字数据集是机器学习分类领域的优质数据集,文章以反向传播(Back Propagation,BP)神经网络为基础,对手写数字进行分类识别。为减少BP神经网络的计算开支,实验前,对比了过滤卡方检验法、主成分分析(Principal Component Analysis,P... 手写数字数据集是机器学习分类领域的优质数据集,文章以反向传播(Back Propagation,BP)神经网络为基础,对手写数字进行分类识别。为减少BP神经网络的计算开支,实验前,对比了过滤卡方检验法、主成分分析(Principal Component Analysis,PCA)降维、线性判别式分析(Linear Discriminant Analysis,LDA)降维以及多维尺度变换(Multidimensional Scaling,MDS)降维对特征选取的训练测试效果,从而确定了神经网络拟合之前的最优特征提取方法。实验中,利用Bagging对BP神经网络进行集成处理,分类识别了手写数字。实验后,将文中方法与朴素贝叶斯、决策树、随机森林、LDA多分类进行对比。结果表明,采取LDA降维方法时,降到9维的特征提取方式最优,单个BP神经网络对手写数字数据识别的准确率为92%左右,而基于Bagging集成的BP神经网络在识别准确率方面高达95%。 展开更多
关键词 线性判别式分析(lda) 反向传播(BP) 数据识别 手写数字
下载PDF
基于近红外光谱技术的六大茶类快速识别 被引量:6
18
作者 张灵枝 黄艳 +2 位作者 于英杰 林刚 孙威江 《食品与生物技术学报》 CAS CSCD 北大核心 2024年第1期48-59,共12页
为构建高质量的六大茶类识别模型,本研究中收集了370份样品,通过采集其近红外光谱(near-infrared spectroscopy,NIRS),结合光谱预处理、特征提取以及数据挖掘分类器算法,建立六大茶类快速识别模型。结果表明:1)支持向量机(support vecto... 为构建高质量的六大茶类识别模型,本研究中收集了370份样品,通过采集其近红外光谱(near-infrared spectroscopy,NIRS),结合光谱预处理、特征提取以及数据挖掘分类器算法,建立六大茶类快速识别模型。结果表明:1)支持向量机(support vector machine,SVM)与随机森林(random forest,RF)分类器皆适于六大茶类快速识别模型的构建;2)SVM分类器更适于结合原始光谱(original spectrum,OS)建模,预处理易使基于该分类器建立的模型鉴别性能减弱;3)随机森林(RF)分类器更适用于预处理后光谱建模,所得模型较OS模型在识别正确率(recognition accuracy,RA)及受试者工作特征曲线下面积(area under the curve,AUC)均得到明显提升;4)特征提取中线性判别分析(linear discriminant analysis,LDA)算法表现最好,所得模型的RA较OS模型明显提升,其中最佳模型OS-LDA-SVM的RA为100.00%,AUC为1.00,识别正确率高、泛化能力强、模型性能优异,可产业化应用。综上所述,近红外光谱结合预处理、特征提取算法及分类器建立模型,进行六大茶类识别的可行性强,模型的识别正确率高、性能优异,可为茶叶贸易的茶类快速识别提供科学、准确、高效的技术支撑,为国际茶类识别模型的产业化应用奠定基础。 展开更多
关键词 近红外光谱 茶类识别 支持向量机 随机森林 线性判别分析
下载PDF
Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis
19
作者 LIANG GuiZhao CHEN ZeCong +52 位作者 YANG ShanBin MEI Hu ZHOU Yuan YANG Li ZHOU Peng YANG ShengXi SHU Mao LIAO ChunYang WU ShiRong LI GenRong HE Liu GAO JianKun Gan MengYu LI DeJing CHEN GuoPing WANG GuiXue LONG Sha JING JuHua ZHENG XiaoLin ZENG Hui ZHANG QiaoXia ZHANG MengJun YANG Qi TIAN FeiFei TONG JianBo WANG JiaoNa LIU YongHong LI Bo QIU LiangJia CAI ShaoXi ZHAO Na YANG Yan SU XiaLi SONG Jian CHEN MeiXia ZHANG XueJiao SUN JiaYing LI JingWei CHEN GuoHua CHEN Gang DENG Jie PENG ChuanYou ZHU WanPing XU LuoNan WU YuQuan LIAO LiMin LI Zhi LI Jun LU DaJun SU QinLiang HUANG ZhengHu ZHOU Ping LI ZhiLiang 《Science China Chemistry》 SCIE EI CAS 2008年第2期166-170,共5页
Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influe... Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA). The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%. Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively. External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model. The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA. 展开更多
关键词 AVIAN INFLUENZA virus (AIV) HA protein support vector machine (SVM) linear discriminant analysis (lda)
原文传递
一种稳健的基于VisemicLDA的口形动态特征及听视觉语音识别 被引量:4
20
作者 谢磊 付中华 +4 位作者 蒋冬梅 赵荣椿 Werner Verhelst Hichem Sahli Jan Conlenis 《电子与信息学报》 EI CSCD 北大核心 2005年第1期64-68,共5页
视觉特征提取是听视觉语音识别研究的热点问题。文章引入了一种稳健的基于Visemic LDA的口形动态特征,这种特征充分考虑了发音时口形轮廓的变化及视觉Viseme划分。文章同时提出了一利利用语音识别结果进行LDA训练数据自动标注的方法。... 视觉特征提取是听视觉语音识别研究的热点问题。文章引入了一种稳健的基于Visemic LDA的口形动态特征,这种特征充分考虑了发音时口形轮廓的变化及视觉Viseme划分。文章同时提出了一利利用语音识别结果进行LDA训练数据自动标注的方法。这种方法免去了繁重的人工标注工作,避免了标注错误。实验表明,将'VisemicLDA视觉特征引入到听视觉语音识别中,可以大大地提高噪声条件下语音识别系统的识别率;将这种视觉特征与多数据流HMM结合之后,在信噪比为10dB的强噪声情况下,识别率仍可以达到80%以上。 展开更多
关键词 语音识别 听视觉语音识别 ASM linear discriminant analysis(lda) Viseme
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部