We try to give a quantitative and global discrimination function by studying mb/MS data using Fisher method that is a kind of pattern recognition methods. The reliability of the function is also analyzed. The results ...We try to give a quantitative and global discrimination function by studying mb/MS data using Fisher method that is a kind of pattern recognition methods. The reliability of the function is also analyzed. The results show that this criterion works well and has a global feature, which can be used as first-level filtering criterions in event identification. The quantitative and linear discrimination function makes it possible to identify events automatically and achieve the goal to react the events quickly and effectively.展开更多
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cell...In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.展开更多
A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics an...A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method.展开更多
基金Contribution No.05FE3018,Institute of Geophysics,China Earthquake Administrstion
文摘We try to give a quantitative and global discrimination function by studying mb/MS data using Fisher method that is a kind of pattern recognition methods. The reliability of the function is also analyzed. The results show that this criterion works well and has a global feature, which can be used as first-level filtering criterions in event identification. The quantitative and linear discrimination function makes it possible to identify events automatically and achieve the goal to react the events quickly and effectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61105130 and 61175124)
文摘In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.
基金supported by the National Natural Science Foundation of China (Grant No. 11072117)the Natural Science Foundation of Ningbo City (Grant Nos. 2012A610038 and 2012A610152)+1 种基金the Scientific Research Fund of Education Department of Zhejiang Province,China (Grant No. Z201119278)K.C. Wong Magna Fund in Ningbo University
文摘A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method.