Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nu...Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nuclear medicine.The behavior of this type of target must be known to prevent eventual failures during radiation.The present study aims to assess,via prediction,the thermal–mechanical behavior,physical integrity,and geometric stability of targets under neutron radiation in a nuclear reactor.For this purpose,a numerical simulation using a three-dimensional finite element analysis model was performed to determine the thermal expansion and stress distribution in the target cladding.The neutronic calculation results,target material properties,and cooling parameters of the KAERI research group were used as inputs in our developed model.Thermally induced stress and deflection on the target were calculated using Ansys-Fluent codes,and the temperature profiles,as inputs of this calculation,were obtained from a CFD thermal–hydraulic model.The stress generated,induced by the pressure of fission gas release at the interface of the cladding target,was also estimated using the Redlich–Kwong equation of state.The results obtained using the bonded and unbonded target models considering the effect of the radiation heat combined with a fission gas release rate of approximately 3%show that the predicted thermal stress and deflection values satisfy the structural performance requirement and safety design.It can be presumed that the integrity of the target cladding is maintained under these conditions.展开更多
Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is ...Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.展开更多
The exact equation of state (EOS) for the fission gas Xe is necessary for the accurate prediction of the fission gas behavior in uranium dioxide nuclear fuel, However, the comparison with the experimental data indic...The exact equation of state (EOS) for the fission gas Xe is necessary for the accurate prediction of the fission gas behavior in uranium dioxide nuclear fuel, However, the comparison with the experimental data indicates that the applicable pressure ranges of existing EOS for Xe published in the literature cannot cover the overpressure of the rim fission gas bubble at the typical UO2 fuel pellet rim structure. Based on the interatomic potential of Xe, the pressure-volume-temperature data are calculated by the molecular dynamics (MD) simulation. The results indicate that the data of MD simulation with Ross and McMahan's potential [M. Ross and A. K. McMahan 1980 Phys. Rev. B 21 1658] are in good agreement with the experimental data. A preferable EOS for Xe is proposed based on the MD simulation. The comparison with the MD simulation data shows that the proposed EOS can be applied at pressures up to 550 MPa and 3 GPa and temperatures 900 K and 1373 K respectively. The applicable pressure range of this EOS is wider than those of the other existing EOS for Xe published in the literature.展开更多
文摘Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nuclear medicine.The behavior of this type of target must be known to prevent eventual failures during radiation.The present study aims to assess,via prediction,the thermal–mechanical behavior,physical integrity,and geometric stability of targets under neutron radiation in a nuclear reactor.For this purpose,a numerical simulation using a three-dimensional finite element analysis model was performed to determine the thermal expansion and stress distribution in the target cladding.The neutronic calculation results,target material properties,and cooling parameters of the KAERI research group were used as inputs in our developed model.Thermally induced stress and deflection on the target were calculated using Ansys-Fluent codes,and the temperature profiles,as inputs of this calculation,were obtained from a CFD thermal–hydraulic model.The stress generated,induced by the pressure of fission gas release at the interface of the cladding target,was also estimated using the Redlich–Kwong equation of state.The results obtained using the bonded and unbonded target models considering the effect of the radiation heat combined with a fission gas release rate of approximately 3%show that the predicted thermal stress and deflection values satisfy the structural performance requirement and safety design.It can be presumed that the integrity of the target cladding is maintained under these conditions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U2167217,12205286,and 11905025)the National MCF Energy Research and Development Program of China (Grant No.2018YFE0308105)。
文摘Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.
基金Project supported by the National Natural Science Foundation of China (Grant No.11205146)
文摘The exact equation of state (EOS) for the fission gas Xe is necessary for the accurate prediction of the fission gas behavior in uranium dioxide nuclear fuel, However, the comparison with the experimental data indicates that the applicable pressure ranges of existing EOS for Xe published in the literature cannot cover the overpressure of the rim fission gas bubble at the typical UO2 fuel pellet rim structure. Based on the interatomic potential of Xe, the pressure-volume-temperature data are calculated by the molecular dynamics (MD) simulation. The results indicate that the data of MD simulation with Ross and McMahan's potential [M. Ross and A. K. McMahan 1980 Phys. Rev. B 21 1658] are in good agreement with the experimental data. A preferable EOS for Xe is proposed based on the MD simulation. The comparison with the MD simulation data shows that the proposed EOS can be applied at pressures up to 550 MPa and 3 GPa and temperatures 900 K and 1373 K respectively. The applicable pressure range of this EOS is wider than those of the other existing EOS for Xe published in the literature.