期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Human motion prediction using optimized sliding window polynomial fitting and recursive least squares 被引量:2
1
作者 Li Qinghua Zhang Zhao +3 位作者 Feng Chao Mu Yaqi You Yue Li Yanqiang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期76-85,110,共11页
Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid h... Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid human motion prediction algorithm,optimized sliding window polynomial fitting and recursive least squares(OSWPF-RLS)was proposed.The OSWPF-RLS algorithm uses the human body joint data obtained under the HRC task as input,and uses recursive least squares(RLS)to predict the human movement trajectories within the time window.Then,the optimized sliding window polynomial fitting(OSWPF)is used to calculate the multi-step prediction value,and the increment of multi-step prediction value was appropriately constrained.Experimental results show that compared with the existing benchmark algorithms,the OSWPF-RLS algorithm improved the multi-step prediction accuracy of human motion and enhanced the ability to respond to different human movements. 展开更多
关键词 human-robot collaboration(HRC) human motion prediction sliding window polynomial fitting(SWPF)algorithm recursive least squares(RLS) optimized sliding window polynomial fitting and recursive least squares(OSWPF-RLS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部