Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers fro...Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers from interference,which causes serious problems,such as wasting energy and degrading throughput.In reality,not all of the sensors in WBAN need to be active at the same time.Therefore,they can be divided into different groups so that each group works in turn to avoid interference.In this paper,a Nest-Based WBAN Scheduling(NBWS)algorithm is proposed to cluster sensors of the same types in a single or multiple WBANs into different groups to avoid interference.Particularly,we borrow the graph coloring theory to schedule all groups to work using a Time Division for Multimodal Sensor(TDMS)group scheduling model.Both theoretical analysis and experimental results demonstrate that the proposed NBWS algorithm performs better in terms of frequency of collisions,transmission delay,system throughput,and energy consumption compared to the counterpart methods.展开更多
疾病诊治是水产动物健康养殖工程的重要支撑,知识图谱是水产动物疾病诊治知识表示及应用的有效手段,命名实体识别是构建水产动物疾病诊治知识图谱的关键。针对一词多义、实体嵌套等导致的水产动物疾病诊治命名实体识别准确率不高的问题...疾病诊治是水产动物健康养殖工程的重要支撑,知识图谱是水产动物疾病诊治知识表示及应用的有效手段,命名实体识别是构建水产动物疾病诊治知识图谱的关键。针对一词多义、实体嵌套等导致的水产动物疾病诊治命名实体识别准确率不高的问题,该研究提出了融合BERT(Bidirectional Encoder Representations from Transformers)与CaBiLSTM (Cascade Bi-directional Long Short-Term Memory)的实体识别模型。首先,建立水产动物疾病诊治专用语料库,并利用语料库中的数据对设计的模型进行训练;其次,采用“分层思想”设计CaBiLSTM模型进行嵌套实体识别,用降维的内层实体特征提升外层实体的辨析度,并引入BERT模型增添实体位置信息;最后,为验证所提出方法的有效性进行对比试验。试验结果表明,提出的融合BERT与CaBiLSTM模型对水产动物疾病诊治命名实体识别准确率、召回率、F1值分别达到93.07%、92.85%、92.96%。研究表明,该模型能够有效解决水产动物疾病诊治命名实体识别过程中由于一词多义、实体嵌套等导致的识别准确率不高问题,可提高水产动物疾病诊治知识图谱的构建质量,促进水产健康养殖工程发展。展开更多
基金the Ningbo International Science and Technology Cooperation Programme(2016D10008)the Ningbo Key Science and Technology plan(2025)projects(2018B10075,2019B10125,2019B10028)+2 种基金the Marine Biotechnology and Marine Engineering Discipline Group(422004582)the Project of Research and Development of Intelligent Resource Allocation and Sharing Platform for Marine Electronic Information Industry(2017GY116)the Key science and technology projects of Zhejiang Province(2020C03064).
文摘Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers from interference,which causes serious problems,such as wasting energy and degrading throughput.In reality,not all of the sensors in WBAN need to be active at the same time.Therefore,they can be divided into different groups so that each group works in turn to avoid interference.In this paper,a Nest-Based WBAN Scheduling(NBWS)algorithm is proposed to cluster sensors of the same types in a single or multiple WBANs into different groups to avoid interference.Particularly,we borrow the graph coloring theory to schedule all groups to work using a Time Division for Multimodal Sensor(TDMS)group scheduling model.Both theoretical analysis and experimental results demonstrate that the proposed NBWS algorithm performs better in terms of frequency of collisions,transmission delay,system throughput,and energy consumption compared to the counterpart methods.
文摘疾病诊治是水产动物健康养殖工程的重要支撑,知识图谱是水产动物疾病诊治知识表示及应用的有效手段,命名实体识别是构建水产动物疾病诊治知识图谱的关键。针对一词多义、实体嵌套等导致的水产动物疾病诊治命名实体识别准确率不高的问题,该研究提出了融合BERT(Bidirectional Encoder Representations from Transformers)与CaBiLSTM (Cascade Bi-directional Long Short-Term Memory)的实体识别模型。首先,建立水产动物疾病诊治专用语料库,并利用语料库中的数据对设计的模型进行训练;其次,采用“分层思想”设计CaBiLSTM模型进行嵌套实体识别,用降维的内层实体特征提升外层实体的辨析度,并引入BERT模型增添实体位置信息;最后,为验证所提出方法的有效性进行对比试验。试验结果表明,提出的融合BERT与CaBiLSTM模型对水产动物疾病诊治命名实体识别准确率、召回率、F1值分别达到93.07%、92.85%、92.96%。研究表明,该模型能够有效解决水产动物疾病诊治命名实体识别过程中由于一词多义、实体嵌套等导致的识别准确率不高问题,可提高水产动物疾病诊治知识图谱的构建质量,促进水产健康养殖工程发展。