As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their fl...As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry.展开更多
Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting inter...Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 ℃, while the effect was evident at 650 and 700 ℃ but became limited again above 800 ℃. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics.展开更多
A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main ob...A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.展开更多
The numerical model was presented for the coal combustion in the packed bed. The bifurcation characteristic of the ignition-extinction of solid-phase smoldering and tran- sition to flaming was studied for the packed b...The numerical model was presented for the coal combustion in the packed bed. The bifurcation characteristic of the ignition-extinction of solid-phase smoldering and tran- sition to flaming was studied for the packed bed of coal.One of the Frank-Kamenetskii parameter β_1 was selected as the control parameter.The computed results show that the bifurcation curve is obviously divided into two zones of solid-phase reaction and gas- phase reaction,and the total process of ignition-extinction presents twice bifurcation cha- racteristic.Moreover,the vanishing of critical state of ignition-extinction is studied.One of the transition points,ε_2=0.05,is numerically solved for the vanishing of critical state.The larger the value of ε_2 is,the easier the gas-phase can react.However,the combustion temperature will decrease with increasing ε_2.The other transition point α_2=0.53 is also ob- tained.With increasing the value of α_2,the combustion temperature of gas-phase reaction is close to the smoldering temperature of coal.When α_2 is infinite,the only reaction occur- ring is the smoldering combustion of solid-phase,and the gas-phase cannot react.展开更多
Experiments on the solid-state reaction between iron ore particles and MgO were performed to investigate the coating mechanism of MgO on the iron ore particles' surface during fluidized bed reduction. MgO powders and...Experiments on the solid-state reaction between iron ore particles and MgO were performed to investigate the coating mechanism of MgO on the iron ore particles' surface during fluidized bed reduction. MgO powders and iron ore particles were mixed and compressed into briquettes and, subsequently, roasted at different temperatures and for different time periods. A Mg-containing layer was observed on the outer edge of the iron ore particles when the roasting temperature was greater than 1173 K. The concentration of Fe in the Mg-containing layer was evenly distributed and was approximately 10wt%, regardless of the temperature change. Boundary layers of Mg and Fe were observed outside of the iron ore particles. The change in concentration of Fe in the boundary layers was simulated using a gas–solid diffusion model, and the diffusion coefficients of Fe and Mg in these layers at different temperatures were calculated. The diffusion activation energies of Fe and Mg in the boundary layers in these experiments were evaluated to be approximately 176 and 172 k J/mol, respectively.展开更多
We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)w...We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)with near-infrared(NIR)luminescence.The formation of Ag2S QDs occurs at the interface of microdroplets,and the average size of Ag2S QDs was 4.5 nm with a narrow size distribution.Ag2S QDs can disperse well in various organic solvents and exhibit NIR luminescence with a peak wavelength at 1270 nm under 980-nm laser excitation.The mechanism of the process intensification was revealed by both the computational fluid dynamics simulation and fluorescence imaging,and the mechanism is attributed to the small and uniform droplet formation in the RPB reactor.This study provides a novel approach for the continuous and ultrafast synthesis of NIR Ag2S QDs for potential scale-up.展开更多
Hydrided Mg-3Ni-2MnO2 composite powders were fabricated by reactive ball milling with hydrogen, and accumulative hydrogenation kinetics and temperature field of reaction bed with various porosities (0.37, 0.53 and 0.6...Hydrided Mg-3Ni-2MnO2 composite powders were fabricated by reactive ball milling with hydrogen, and accumulative hydrogenation kinetics and temperature field of reaction bed with various porosities (0.37, 0.53 and 0.63) were measured. The results show that the accumulative hydrogenation kinetics of Mg-3Ni-2MnO2 powder reaction bed depends strongly on the effect of heat transfer, mass transfer and intrinsic reaction together. The reaction bed with the porosity of 0.53 exhibits the largest hydrogenation rate. During the hydrogenation process, the temperature of reaction bed rises quickly due to the fast release of heat, and the temperature difference between center and wall with 0.53 porosity can keep high even for a long time, which promotes fast heat transfer. The further analysis indicates that more emphases should be put on heat transfer rate rather than the only improvement of the effective thermal conductivity.展开更多
Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer...Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.展开更多
Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed ch...Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product qualityand output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design ofa FBCVD reactor.展开更多
The reduction of 1-3 mm fine powder of iron ore by H2 was conducted in a lab-fabricated kg class high temperature fluidized bed. The results show that the differential pressure in the fluidized bed, which has small fl...The reduction of 1-3 mm fine powder of iron ore by H2 was conducted in a lab-fabricated kg class high temperature fluidized bed. The results show that the differential pressure in the fluidized bed, which has small fluctuation with time, increases with the increase of gas flowing velocity. The utilization ratio of gas decreases when the reaction lasts longer time indicating that the reaction is faster at the beginning of reduction and becomes slower in the latter process. The higher the reaction temperature is, the higher the utilization ratio of gas is, but the difference of utilization ratio among the different temperatures becomes smaller with time. The utilization ratio of gas and the metallization ratio can reach 9% and 84% respectively at 750℃ for 20 min, which shows the reduction reaction by H2 is very fast. The increase of metallization ratio with gas velocity performs quite good linearity, which shows that a higher velocity of reducing gas can be used to improve the productivity of the reactor when H2 is used as reducing gas. With the increase of charge height, the metallization ratio decreases, but the utilization ratio of gas increases. The reaction temperature can be reduced to 700-750℃ from 800-850℃ when H2 is used as reducing gas.展开更多
An unsteady-state mathematical model describing the behaviors of gas and solid during the oxidation of ilmenite in a fluidized bed was developed on the basis of the two-phase theory of a fluidized-bed reactor. The lon...An unsteady-state mathematical model describing the behaviors of gas and solid during the oxidation of ilmenite in a fluidized bed was developed on the basis of the two-phase theory of a fluidized-bed reactor. The longitudinal distribution of the concentration of gaseous species and that of the unreacted ratio of solid material in both bubble phase and emulsion phase as well as their variation with reaction time were determined by means of mathematical simulation with kinetic parameters measured experimentally, furthermore, the reaction behavior of particles with different size in a multiparticle system was also analyzed, and finally, the potential way for increasing the reactor efficiency was put forward.展开更多
In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability an...In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD).展开更多
The intrinsic kinetics of iron oxide reduced by carbon monoxide is evaluated by a method of online measuring concentration of off-gas in an isothermal differential micro-packed bed. Under the condition of getting away...The intrinsic kinetics of iron oxide reduced by carbon monoxide is evaluated by a method of online measuring concentration of off-gas in an isothermal differential micro-packed bed. Under the condition of getting away from the influence of gas diffusion and gas–solid heat transfer and mass transfer, the reaction of Fe2O3 to Fe3O4, Fe3O4 to Fe O and Fe O to Fe in the process of single reaction can be clearly distinguished from each other, and the relevant activation energy is characterized to be 75.4, 74.4, and 84.0 k J·mol-1, respectively. Therefore, the change of surface area in the reaction process due to losing oxygen could be easily calculated by combining it with pre-exponential parameters of Arrhenius equations. In conclusion, these kinetic parameters are verified by the experimental data for the process of ore reduced by carbon monoxide in a packed bed.展开更多
The oxidation kinetics of Panzhihua ilmenite was studied in a fluidized bed in the temperature range of 1053-1153 K. Within this temperature interval, the reaction can be expressed: From the experimental results, it w...The oxidation kinetics of Panzhihua ilmenite was studied in a fluidized bed in the temperature range of 1053-1153 K. Within this temperature interval, the reaction can be expressed: From the experimental results, it was clarified that the intrinsic chemical reaction is the rate-controlling step.展开更多
A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca...A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.展开更多
Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch ...Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.展开更多
Characteristics of sulfur dioxide emission from coal and petroleum coke combustion were examined in a lab scale circulating fluidized bed (CFB) combustor. The rate constant of the first order rate expression for the a...Characteristics of sulfur dioxide emission from coal and petroleum coke combustion were examined in a lab scale circulating fluidized bed (CFB) combustor. The rate constant of the first order rate expression for the absorption SO2 on the CaO surface was similar regardless of the origin of the limestone, the particle size and the initial SO2 concentration. However, the total SO2 absorption capacity was different depending on the origin of the limestone. The breakability of the particle which provides new surface for the reaction seems to play a major role in the absorption characteristics.展开更多
基金the support of National Natural Science Foundation of China(21878019)Beijing Natural Science Foundation(2182063)。
文摘As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry.
基金Supported by the National Natural Science Foundation of China(21376250)National Basic Research Program of China(2014CB744303)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA07010100)
文摘Pyrolysis of Shenmu coal was performed in fixed-bed reactors indirectly heated by reducing operating pressure and mounting internals in the reactor to explore their synergetic effects on coal pyrolysis. Mounting internals particularly designed greatly improved the heat transfer inside coal bed and raised the yield of tar production.Reducing pressure further facilitated the production of tar through its suppression of secondary reactions occurring in the reactor. The absolute increase in tar yield reached 3.33 wt% in comparison with the pyrolysis in the reactor without internals under atmospheric pressure. The obtained tar yield in the reactor with internals under reduced pressure was even higher than the yield of Gray–King assay. Through experiments in a laboratory fixed bed reactor, it was also clarified that the effect of reducing pressure is related to volatile release rate in pyrolysis. It did not obviously vary tar yield at pyrolysis temperatures below 600 ℃, while the effect was evident at 650 and 700 ℃ but became limited again above 800 ℃. Under reduced pressure the produced tar contained more aliphatics and phenols but less aromatics.
文摘A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.
基金the National Natural Science Foundation(50574049)National Key Technology R&D Pogram of China(2006BAK03B05)
文摘The numerical model was presented for the coal combustion in the packed bed. The bifurcation characteristic of the ignition-extinction of solid-phase smoldering and tran- sition to flaming was studied for the packed bed of coal.One of the Frank-Kamenetskii parameter β_1 was selected as the control parameter.The computed results show that the bifurcation curve is obviously divided into two zones of solid-phase reaction and gas- phase reaction,and the total process of ignition-extinction presents twice bifurcation cha- racteristic.Moreover,the vanishing of critical state of ignition-extinction is studied.One of the transition points,ε_2=0.05,is numerically solved for the vanishing of critical state.The larger the value of ε_2 is,the easier the gas-phase can react.However,the combustion temperature will decrease with increasing ε_2.The other transition point α_2=0.53 is also ob- tained.With increasing the value of α_2,the combustion temperature of gas-phase reaction is close to the smoldering temperature of coal.When α_2 is infinite,the only reaction occur- ring is the smoldering combustion of solid-phase,and the gas-phase cannot react.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-TP-15-009A2)the Project Funded by China Postdoctoral Science Foundation (2015M570931)+1 种基金the National Natural Science Fund Project of China (91534121)the National Major Scientific Instruments Special Plan (2011YQ12003907)
文摘Experiments on the solid-state reaction between iron ore particles and MgO were performed to investigate the coating mechanism of MgO on the iron ore particles' surface during fluidized bed reduction. MgO powders and iron ore particles were mixed and compressed into briquettes and, subsequently, roasted at different temperatures and for different time periods. A Mg-containing layer was observed on the outer edge of the iron ore particles when the roasting temperature was greater than 1173 K. The concentration of Fe in the Mg-containing layer was evenly distributed and was approximately 10wt%, regardless of the temperature change. Boundary layers of Mg and Fe were observed outside of the iron ore particles. The change in concentration of Fe in the boundary layers was simulated using a gas–solid diffusion model, and the diffusion coefficients of Fe and Mg in these layers at different temperatures were calculated. The diffusion activation energies of Fe and Mg in the boundary layers in these experiments were evaluated to be approximately 176 and 172 k J/mol, respectively.
基金supported by the National Natural Science Foundation of China(No.21808009)the Beijing Natural Science Foundation(No.2182051).
文摘We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)with near-infrared(NIR)luminescence.The formation of Ag2S QDs occurs at the interface of microdroplets,and the average size of Ag2S QDs was 4.5 nm with a narrow size distribution.Ag2S QDs can disperse well in various organic solvents and exhibit NIR luminescence with a peak wavelength at 1270 nm under 980-nm laser excitation.The mechanism of the process intensification was revealed by both the computational fluid dynamics simulation and fluorescence imaging,and the mechanism is attributed to the small and uniform droplet formation in the RPB reactor.This study provides a novel approach for the continuous and ultrafast synthesis of NIR Ag2S QDs for potential scale-up.
基金Projects(2006126, 2006130 and 2008GG10007004) supported by the Science & Technology Plan of Shandong Province, China
文摘Hydrided Mg-3Ni-2MnO2 composite powders were fabricated by reactive ball milling with hydrogen, and accumulative hydrogenation kinetics and temperature field of reaction bed with various porosities (0.37, 0.53 and 0.63) were measured. The results show that the accumulative hydrogenation kinetics of Mg-3Ni-2MnO2 powder reaction bed depends strongly on the effect of heat transfer, mass transfer and intrinsic reaction together. The reaction bed with the porosity of 0.53 exhibits the largest hydrogenation rate. During the hydrogenation process, the temperature of reaction bed rises quickly due to the fast release of heat, and the temperature difference between center and wall with 0.53 porosity can keep high even for a long time, which promotes fast heat transfer. The further analysis indicates that more emphases should be put on heat transfer rate rather than the only improvement of the effective thermal conductivity.
基金Projects(51374064,51004033,51074044)supported by the National Natural Science Foundation of ChinaProject(2012AA062303)supported by High-tech Research and Development Program of China
文摘Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.
基金Supported by the Natural Science Foundation of Shandong Province of China (ZR2009BM011) and the Doctor Foundation of Shandong Province of China (BS2010NJ005).
文摘Various methods for production of polysilicon have been proposed for lowering the production cost andenergy consumption, and enhancing productivity, which are critical for industrial applications. The fluidized bed chemical vapor deposition (FBCVD) method is a most promising alternative to conventional ones, but the homogeneous reaction of silane in FBCVD results in unwanted formation of fines, which will affect the product qualityand output. There are some other problems, such as heating degeneration due to undesired polysilicon deposition on the walls of the reactor and the heater. This article mainly reviews the technological development on FBCVD of polycrystalline silicon and the research status for solving the above problems. It also identifies a number of challenges to tackle and principles should be followed in the design ofa FBCVD reactor.
基金supported by the National Nature Science Foundation of China(No.50474006)the National Science and Technology Support Program for the 11th Five-Year Plan of China(No.2006BAE03A12 and No.2006BAE03A05)
文摘The reduction of 1-3 mm fine powder of iron ore by H2 was conducted in a lab-fabricated kg class high temperature fluidized bed. The results show that the differential pressure in the fluidized bed, which has small fluctuation with time, increases with the increase of gas flowing velocity. The utilization ratio of gas decreases when the reaction lasts longer time indicating that the reaction is faster at the beginning of reduction and becomes slower in the latter process. The higher the reaction temperature is, the higher the utilization ratio of gas is, but the difference of utilization ratio among the different temperatures becomes smaller with time. The utilization ratio of gas and the metallization ratio can reach 9% and 84% respectively at 750℃ for 20 min, which shows the reduction reaction by H2 is very fast. The increase of metallization ratio with gas velocity performs quite good linearity, which shows that a higher velocity of reducing gas can be used to improve the productivity of the reactor when H2 is used as reducing gas. With the increase of charge height, the metallization ratio decreases, but the utilization ratio of gas increases. The reaction temperature can be reduced to 700-750℃ from 800-850℃ when H2 is used as reducing gas.
文摘An unsteady-state mathematical model describing the behaviors of gas and solid during the oxidation of ilmenite in a fluidized bed was developed on the basis of the two-phase theory of a fluidized-bed reactor. The longitudinal distribution of the concentration of gaseous species and that of the unreacted ratio of solid material in both bubble phase and emulsion phase as well as their variation with reaction time were determined by means of mathematical simulation with kinetic parameters measured experimentally, furthermore, the reaction behavior of particles with different size in a multiparticle system was also analyzed, and finally, the potential way for increasing the reactor efficiency was put forward.
基金supported by the China National Major Scientifc and Technological Special Project for ‘‘Physical and Chemical Reaction between CO2 and Coal and Rock after Infuse CO2 into Deep Coal Bed’’ during the Twelfth Five-Year Plan Period(No.2011ZX05042-03)
文摘In order to study the physical and chemical reaction after CO2 injected into coal beds at different condition.The physical and chemistry reaction among CO2,H2O and coal was studied,and the influence on permeability and porosity of coal beds was carried out.The experimental method was used,so did the basic theory of mineralogy,coal petrology,geochemistry,analytical geochemistry and physical chemistry.In this experiment,the changes of mineral and permeability of coal and water quality were observed through CO2 solution reacting with different coal samples.The differences could be found out by comparing the properties and microcrystalline structure before and after the reaction.There are three results were carried out:First,the content of carbonate in coal beds decreases because of the dissolution reaction between carbonate minerals and CO2 solution,and precipitation is formed by reaction of chlorite and orthoclase.Second,the result that permeability and porosity of coal beds are improved after the reaction is proposed.Third,the initial permeability of different coal samples plays a great role on the reaction,and the improvement of permeability is not obvious in the samples which have too low or too high permeability,and the improvement is good in medium permeability(0.2–3 mD).
基金Supported by the State Key Development Program for Basic Research of China(2015CB251402)the National Natural Science Foundation of China(21206159)
文摘The intrinsic kinetics of iron oxide reduced by carbon monoxide is evaluated by a method of online measuring concentration of off-gas in an isothermal differential micro-packed bed. Under the condition of getting away from the influence of gas diffusion and gas–solid heat transfer and mass transfer, the reaction of Fe2O3 to Fe3O4, Fe3O4 to Fe O and Fe O to Fe in the process of single reaction can be clearly distinguished from each other, and the relevant activation energy is characterized to be 75.4, 74.4, and 84.0 k J·mol-1, respectively. Therefore, the change of surface area in the reaction process due to losing oxygen could be easily calculated by combining it with pre-exponential parameters of Arrhenius equations. In conclusion, these kinetic parameters are verified by the experimental data for the process of ore reduced by carbon monoxide in a packed bed.
文摘The oxidation kinetics of Panzhihua ilmenite was studied in a fluidized bed in the temperature range of 1053-1153 K. Within this temperature interval, the reaction can be expressed: From the experimental results, it was clarified that the intrinsic chemical reaction is the rate-controlling step.
基金Supported by the Three-Item Science & Technology Foundation of Fujian Province(K02017)
文摘A novel reaction-drying process was carried out in a spouted bed reactor with inert particles and used to prepare ultrafine CaCO3 particles. Effects of concentrations of CO2 and Ca(OH)2, and reaction temperature on Ca(OH)2 conversion were experimentally investigated. The particle sizes and composition of CaCO3 produced were characterized with transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that ultrafine CaCO3 particles with mean size of 80 nm could be obtained with this novel process.By modifying the Arrhenius Equation and considering the Ca(OH)2 state, a kinetic model was established to describe the process in the spouted bed. The model parameters estimated from the reaction-drying experiments were found to fit well the experimental data, indicating the applicability of the proposed kinetic model.
基金the support of the National Natural Science Foundation of China (20222809, 21978146)TsinghuaFoshan Innovation Special Fund (2021THFS0214)。
文摘Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.
文摘Characteristics of sulfur dioxide emission from coal and petroleum coke combustion were examined in a lab scale circulating fluidized bed (CFB) combustor. The rate constant of the first order rate expression for the absorption SO2 on the CaO surface was similar regardless of the origin of the limestone, the particle size and the initial SO2 concentration. However, the total SO2 absorption capacity was different depending on the origin of the limestone. The breakability of the particle which provides new surface for the reaction seems to play a major role in the absorption characteristics.