We developed a novel portable and automated dissolution test analyzer for rapid and high precision in vitro dissolution testing of drugs.The analyzer consists of a flow-through-cell drug dissolution system,an automate...We developed a novel portable and automated dissolution test analyzer for rapid and high precision in vitro dissolution testing of drugs.The analyzer consists of a flow-through-cell drug dissolution system,an automated sequential sampling system,a high-speed capillary electrophoresis(HSCE)system,and a data acquisition system.Combining the high-temporal resolution flow-gating sampling approach with HSCE,which has outstanding advantages of efficient separation and resolution,the analyzer can achieve rapid analysis and exhibits the ability in miniaturization for on-site assessment of different active pharmaceutical ingredients.To integrate the flow-through-cell dissolution system with HSCE,a specially designed flow-gating-injection(FGI)interface was employed.The performance of the analyzer was investigated by analyzing the dissolution of immediate-release drugs including single dose(amoxicillin dispersible tablets)and fixed dose combination(amoxicillin and clavulanate potassium)drug tablets with the high-temporal resolutions of 12 s and 20 s,respectively.The dissolution profiles of different active pharmaceutical ingredients could be simultaneously and automatically monitored with high repeatability and accuracy.The analyzer was successfully utilized for the pharmaceutical quality control and bio-relevant dissolution testing,as well as in vivo-in vitro correlation analysis.Our portable analyzer is miniaturized,convenient and of low-cost,and will provide a valuable tool for dissolution testing in pharmaceutical research and development.展开更多
Aim/Objective: Increase in incidences of pneumonia due to multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA) in both community and health care settings is of great concern globally. Present study ...Aim/Objective: Increase in incidences of pneumonia due to multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA) in both community and health care settings is of great concern globally. Present study aims to retrospectively analyze the efficacy of new fixed dose combination with antibiotic adjuvant entity (FDC) in comparison with vancomycin to treat patients with multi-drug resistant MRSA pneumonia. Materials and Methods: During this retrospective study, case sheets of patients who were treated for MRSA pneumonia with vancomycin or fixed dose combination of vancomycin + ceftriaxone + adjuvant (FDC) between 20 March 2010 to 20 October 2014 at tertiary care center, were analyzed. Various demographic features, antibiotic therapy, length of treatment duration and the resulting efficacy were evaluated. Microbiological success was measured in terms of bacterial eradication, while clinical success was monitored in terms of complete omission of systemic signs and symptoms. Results: Among 136 patients analyzed, 113 cases were having positive culture for MRSA, and hence were further analyzed. Out of these 113 patients, empirical treatment with vancomycin was given in 59 patients and 54 patients were treated with FDC empirically. After initial culture reports, 22 patients showing resistance to vancomycin were shifted to FDC. Amidst all the patients, 24 (64.86%) of 37 from vancomycin group and 62 (81.57%) of 76 from FDC group achieved clinical success. 9 patients out of these failure cases were cured with FDC + colistin combination therapy. Failure rates in FDC treated patients were significantly low (6.57%) as compared to vancomycin group (13.51%). Conclusion: For the treatment of different types of multi-drug resistant MRSA pneumonia, the empirical intravenous FDC therapy was safe and well tolerated with higher efficacy than vancomycin. Most of the vancomycin failure cases responded to FDC therapy and were cured. This retrospective study also concludes that an alternative option of FDC + colistin is safe and effective to treat the patients which fail to respond to FDC monotherapy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21775017)the Natural Science Foundation of Jilin Province,China(Grant No.20180101174JC)。
文摘We developed a novel portable and automated dissolution test analyzer for rapid and high precision in vitro dissolution testing of drugs.The analyzer consists of a flow-through-cell drug dissolution system,an automated sequential sampling system,a high-speed capillary electrophoresis(HSCE)system,and a data acquisition system.Combining the high-temporal resolution flow-gating sampling approach with HSCE,which has outstanding advantages of efficient separation and resolution,the analyzer can achieve rapid analysis and exhibits the ability in miniaturization for on-site assessment of different active pharmaceutical ingredients.To integrate the flow-through-cell dissolution system with HSCE,a specially designed flow-gating-injection(FGI)interface was employed.The performance of the analyzer was investigated by analyzing the dissolution of immediate-release drugs including single dose(amoxicillin dispersible tablets)and fixed dose combination(amoxicillin and clavulanate potassium)drug tablets with the high-temporal resolutions of 12 s and 20 s,respectively.The dissolution profiles of different active pharmaceutical ingredients could be simultaneously and automatically monitored with high repeatability and accuracy.The analyzer was successfully utilized for the pharmaceutical quality control and bio-relevant dissolution testing,as well as in vivo-in vitro correlation analysis.Our portable analyzer is miniaturized,convenient and of low-cost,and will provide a valuable tool for dissolution testing in pharmaceutical research and development.
文摘Aim/Objective: Increase in incidences of pneumonia due to multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA) in both community and health care settings is of great concern globally. Present study aims to retrospectively analyze the efficacy of new fixed dose combination with antibiotic adjuvant entity (FDC) in comparison with vancomycin to treat patients with multi-drug resistant MRSA pneumonia. Materials and Methods: During this retrospective study, case sheets of patients who were treated for MRSA pneumonia with vancomycin or fixed dose combination of vancomycin + ceftriaxone + adjuvant (FDC) between 20 March 2010 to 20 October 2014 at tertiary care center, were analyzed. Various demographic features, antibiotic therapy, length of treatment duration and the resulting efficacy were evaluated. Microbiological success was measured in terms of bacterial eradication, while clinical success was monitored in terms of complete omission of systemic signs and symptoms. Results: Among 136 patients analyzed, 113 cases were having positive culture for MRSA, and hence were further analyzed. Out of these 113 patients, empirical treatment with vancomycin was given in 59 patients and 54 patients were treated with FDC empirically. After initial culture reports, 22 patients showing resistance to vancomycin were shifted to FDC. Amidst all the patients, 24 (64.86%) of 37 from vancomycin group and 62 (81.57%) of 76 from FDC group achieved clinical success. 9 patients out of these failure cases were cured with FDC + colistin combination therapy. Failure rates in FDC treated patients were significantly low (6.57%) as compared to vancomycin group (13.51%). Conclusion: For the treatment of different types of multi-drug resistant MRSA pneumonia, the empirical intravenous FDC therapy was safe and well tolerated with higher efficacy than vancomycin. Most of the vancomycin failure cases responded to FDC therapy and were cured. This retrospective study also concludes that an alternative option of FDC + colistin is safe and effective to treat the patients which fail to respond to FDC monotherapy.