The attractive fixed-point solution of a nonlinear cascade model is stud- ied for the homogeneous isotropic turbulence containing a parameter C, introduced by Desnyansky and Novikov. With a traditional constant positi...The attractive fixed-point solution of a nonlinear cascade model is stud- ied for the homogeneous isotropic turbulence containing a parameter C, introduced by Desnyansky and Novikov. With a traditional constant positive external force added on the first shell equation, it can be found that the attractive fixed-point solution of the model depends on both the parameter C and the external force. Thus, an explicit force is introduced to remove the effects of the external force on the attractive fixed-point solu- tion. F^arthermore, two groups of attractive fixed-point solutions are derived theoretically and studied numerically. One of the groups has the same scaling behavior of the velocity in the whole inertial range and agrees well with those observed by Bell and Nelkin for the nonnegative parameters. The other is found to have different scaling behaviors of the velocity at the odd and even number shells for the negative parameters. This special characteristic may be used to study the anomalous scaling behavior of the turbulence.展开更多
The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical func...The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.展开更多
The transfer of mass flow between ironmaking and steelmaking process atBaoshan Iron and Steel Co. Ltd. has been analyzed. The mathematic-physical models of transportscheduling for hot metal manufacturing have been res...The transfer of mass flow between ironmaking and steelmaking process atBaoshan Iron and Steel Co. Ltd. has been analyzed. The mathematic-physical models of transportscheduling for hot metal manufacturing have been researched combined with the practical problem inthe metallurgical manufacture procedure. Taking into account these models, the scheduling softwarehas been designed, programmed and tested on-line. The new automation system of production schedulinghas been implemented successfully at Baosteel, which produces a great economic benefit.展开更多
Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent ex...Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent exchange of massive data can lead to excess communication overhead between edge and central nodes regardless of whether the federated learning(FL)algorithm uses synchronous or asynchronous aggregation.Therefore,there is an urgent need for a method that can simultaneously take into account device heterogeneity and edge node energy consumption reduction.This paper proposes a novel Fixed-point Asynchronous Federated Learning(FixedAsynFL)algorithm,which could mitigate the resource consumption caused by frequent data communication while alleviating the effect of device heterogeneity.FixedAsynFL uses fixed-point quantization to compress the local and global models in AsynFL.In order to balance energy consumption and learning accuracy,this paper proposed a quantization scale selection mechanism.This paper examines the mathematical relationship between the quantization scale and energy consumption of the computation/communication process in the FixedAsynFL.Based on considering the upper bound of quantization noise,this paper optimizes the quantization scale by minimizing communication and computation consumption.This paper performs pertinent experiments on the MNIST dataset with several edge nodes of different computing efficiency.The results show that the FixedAsynFL algorithm with an 8-bit quantization can significantly reduce the communication data size by 81.3%and save the computation energy in the training phase by 74.9%without significant loss of accuracy.According to the experimental results,we can see that the proposed AsynFixedFL algorithm can effectively solve the problem of device heterogeneity and energy consumption limitation of edge nodes.展开更多
A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanic...A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanical structure of the novel eight-wheel lunar rover is introduced, forward and inverse kinematic models of the rover are established according to the closed-chain coordinate transformation and instantaneous coincidence coordinate. Based on structural characteristics, its kinetic characteristics are analyzed. Wheel slippages are separated and calculated, and a method for closed-loop control modification using wheel slip estimation during the model establishment is proposed. The results can be applied to the motion control of lunar rover.展开更多
Knowing how to make a multi-locomotion robot achieve locomotion transition under different terrains is a challenging problem,especially for tensegrity robots with multi-locomotion modes.In this study,a motion planning...Knowing how to make a multi-locomotion robot achieve locomotion transition under different terrains is a challenging problem,especially for tensegrity robots with multi-locomotion modes.In this study,a motion planning method for the transition of a multi-locomotion tensegrity robot(hereafter TJUBot)under different terrains is proposed.The robot can achieve four locomotion modes:earthworm-like,inchworm-like,tumbling,and sliding locomotion with only two motors.Kinematic models of the four locomotion modes under five typical terrains,including flat ground,confined space,obstacle,gap,and descending slope,are established using the energy method.Meanwhile,the kinematic characteristics(driving law and initial position)of the robot under these terrains are obtained.On this basis,motion planning for the locomotion transition of TJUBot is conducted,which includes a perception strategy based on three laser sensors and a transition strategy under different terrains.The driving laws of the two motors that can ensure the effective locomotion transition of TJUBot under different terrains are naturally obtained.Finally,experiments are conducted.Results demonstrate that the robot can achieve effective locomotion transition when the motion planning method is used.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10902007)he National Basic Research Program of China (973 Program) (No. 2009CB724001)
文摘The attractive fixed-point solution of a nonlinear cascade model is stud- ied for the homogeneous isotropic turbulence containing a parameter C, introduced by Desnyansky and Novikov. With a traditional constant positive external force added on the first shell equation, it can be found that the attractive fixed-point solution of the model depends on both the parameter C and the external force. Thus, an explicit force is introduced to remove the effects of the external force on the attractive fixed-point solu- tion. F^arthermore, two groups of attractive fixed-point solutions are derived theoretically and studied numerically. One of the groups has the same scaling behavior of the velocity in the whole inertial range and agrees well with those observed by Bell and Nelkin for the nonnegative parameters. The other is found to have different scaling behaviors of the velocity at the odd and even number shells for the negative parameters. This special characteristic may be used to study the anomalous scaling behavior of the turbulence.
文摘The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.
文摘The transfer of mass flow between ironmaking and steelmaking process atBaoshan Iron and Steel Co. Ltd. has been analyzed. The mathematic-physical models of transportscheduling for hot metal manufacturing have been researched combined with the practical problem inthe metallurgical manufacture procedure. Taking into account these models, the scheduling softwarehas been designed, programmed and tested on-line. The new automation system of production schedulinghas been implemented successfully at Baosteel, which produces a great economic benefit.
基金This work was funded by National Key R&D Program of China(Grant No.2020YFB0906003).
文摘Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent exchange of massive data can lead to excess communication overhead between edge and central nodes regardless of whether the federated learning(FL)algorithm uses synchronous or asynchronous aggregation.Therefore,there is an urgent need for a method that can simultaneously take into account device heterogeneity and edge node energy consumption reduction.This paper proposes a novel Fixed-point Asynchronous Federated Learning(FixedAsynFL)algorithm,which could mitigate the resource consumption caused by frequent data communication while alleviating the effect of device heterogeneity.FixedAsynFL uses fixed-point quantization to compress the local and global models in AsynFL.In order to balance energy consumption and learning accuracy,this paper proposed a quantization scale selection mechanism.This paper examines the mathematical relationship between the quantization scale and energy consumption of the computation/communication process in the FixedAsynFL.Based on considering the upper bound of quantization noise,this paper optimizes the quantization scale by minimizing communication and computation consumption.This paper performs pertinent experiments on the MNIST dataset with several edge nodes of different computing efficiency.The results show that the FixedAsynFL algorithm with an 8-bit quantization can significantly reduce the communication data size by 81.3%and save the computation energy in the training phase by 74.9%without significant loss of accuracy.According to the experimental results,we can see that the proposed AsynFixedFL algorithm can effectively solve the problem of device heterogeneity and energy consumption limitation of edge nodes.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50975059)the National High-Tech Research and Development Program of China(863 Program)(Grant No.2006AA04Z231)+1 种基金the College Discipline Innovation Wisdom Plan(Grant No.B07018)Development Program of the Excellent Youth Scholars of Harbin Institute of Technology(Grant No.CACZ98504837)
文摘A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanical structure of the novel eight-wheel lunar rover is introduced, forward and inverse kinematic models of the rover are established according to the closed-chain coordinate transformation and instantaneous coincidence coordinate. Based on structural characteristics, its kinetic characteristics are analyzed. Wheel slippages are separated and calculated, and a method for closed-loop control modification using wheel slip estimation during the model establishment is proposed. The results can be applied to the motion control of lunar rover.
基金supported by the National Natural Science Foundation of China(Grant Nos.62027812,52275028 and 52205028)the Tianjin Science and Technology Planning Project(Grant No.20201193)。
文摘Knowing how to make a multi-locomotion robot achieve locomotion transition under different terrains is a challenging problem,especially for tensegrity robots with multi-locomotion modes.In this study,a motion planning method for the transition of a multi-locomotion tensegrity robot(hereafter TJUBot)under different terrains is proposed.The robot can achieve four locomotion modes:earthworm-like,inchworm-like,tumbling,and sliding locomotion with only two motors.Kinematic models of the four locomotion modes under five typical terrains,including flat ground,confined space,obstacle,gap,and descending slope,are established using the energy method.Meanwhile,the kinematic characteristics(driving law and initial position)of the robot under these terrains are obtained.On this basis,motion planning for the locomotion transition of TJUBot is conducted,which includes a perception strategy based on three laser sensors and a transition strategy under different terrains.The driving laws of the two motors that can ensure the effective locomotion transition of TJUBot under different terrains are naturally obtained.Finally,experiments are conducted.Results demonstrate that the robot can achieve effective locomotion transition when the motion planning method is used.