To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additi...To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.展开更多
This paper gives a comprehensive method to do Elliptic Curve Scalar Multiplication with only x-coordinate. Explicit point operation formulae for all types of defining equations of the curves are derived. For each type...This paper gives a comprehensive method to do Elliptic Curve Scalar Multiplication with only x-coordinate. Explicit point operation formulae for all types of defining equations of the curves are derived. For each type of curve, the performance is analyzed. The formulae are applied in Montgomery Ladder to get scalar multiplication algorithm operated with only x-coordinate. The new scalar multiplication has the same security level and computation amount with protected binary scalar multiplication (PBSM) against side channel attack, and has the advantages of higher security and little memory needed.展开更多
The key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Muller and Smart proposed two efficient algorithms for point scalar multiplications over eve...The key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Muller and Smart proposed two efficient algorithms for point scalar multiplications over even or odd finite fields respectively. This paper reduces the corresponding multiplier by modulo Υk-1 +…+Υ+ 1 and improves the above algorithms. Implementation of our Algorithm 1 in Maple for a given elliptic curve shows that it is at least as twice fast as binary method. By setting up a precomputation table, Algorithm 2, an improved version of Algorithm 1, is proposed. Since the time for the precomputation table can be considered free, Algorithm 2 is about (3/2) log2 q - 1 times faster than binary method for an elliptic curve over展开更多
Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding...Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding a suitable small positive integer s such that q^s can be represented as some very sparse φ-polynomial is proposed. If a Normal Basis (NB) or Optimal Normal Basis (ONB) is applied and the precomputations are considered free, our algorithm will cost, on average, about 55% to 80% less than binary method, and about 42% to 74% less than φ-ary method. For some elliptic curves, our algorithm is also taster than Mǖller's algorithm. In addition, an effective algorithm is provided for finding such integer s.展开更多
This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
In this paper,we focus on the following coupled system of k-Hessian equations:{S_(k)(λ(D^(2)u))=f_(1)(|x|,-v)in B,S_(k)(λ(D^(2)v))=f2(|x|,-u)in B,u=v=0 on■B.Here B is a unit ball with center 0 and fi(i=1,2)are cont...In this paper,we focus on the following coupled system of k-Hessian equations:{S_(k)(λ(D^(2)u))=f_(1)(|x|,-v)in B,S_(k)(λ(D^(2)v))=f2(|x|,-u)in B,u=v=0 on■B.Here B is a unit ball with center 0 and fi(i=1,2)are continuous and nonnegative functions.By introducing some new growth conditions on the nonlinearities f_(1) and f_(2),which are more flexible than the existing conditions for the k-Hessian systems(equations),several new existence and multiplicity results for k-convex solutions for this kind of problem are obtained.展开更多
The focal point of this paper is to present the theoretical aspects of the building blocks of the upper bounds of ISD (integer sub-decomposition) method defined by kP = k11P + k12ψ1 (P) + k21P + k22ψ2 (P) w...The focal point of this paper is to present the theoretical aspects of the building blocks of the upper bounds of ISD (integer sub-decomposition) method defined by kP = k11P + k12ψ1 (P) + k21P + k22ψ2 (P) with max {|k11|, |k12|} 〈 Ca√n and max{|k21|, |k22|}≤C√, where C=I that uses efficiently computable endomorphisms ψj for j=1,2 to compute any multiple kP of a point P of order n lying on an elliptic curve E. The upper bounds of sub-scalars in ISD method are presented and utilized to enhance the rate of successful computation of scalar multiplication kP. Important theorems that establish the upper bounds of the kernel vectors of the ISD reduction map are generalized and proved in this work. The values of C in the upper bounds, that are greater than 1, have been proven in two cases of characteristic polynomials (with degree 1 or 2) of the endomorphisms. The upper bound of ISD method with the case of the endomorphism rings over an integer ring Z results in a higher rate of successful computations kP. Compared to the case of endomorphism rings, which is embedded over an imaginary quadratic field Q = [4-D]. The determination of the upper bounds is considered as a key point in developing the ISD elliptic scalar multiplication technique.展开更多
Scalar multiplication [n]P is the kernel and the most time-consuming operation in elliptic curve cryptosystems. In order to improve scalar multiplication, in this paper, we propose a tripling algorithm using Lopez and...Scalar multiplication [n]P is the kernel and the most time-consuming operation in elliptic curve cryptosystems. In order to improve scalar multiplication, in this paper, we propose a tripling algorithm using Lopez and Dahab projective coordinates, in which there are 3 field multiplications and 3 field squarings less than that in the Jacobian projective tripling algorithm. Furthermore, we map P to(φε^-1(P), and compute [n](φε^-1(P) on elliptic curve Eε, which is faster than computing [n]P on E, where φε is an isomorphism. Finally we calculate (φε([n]φε^-1(P)) = [n]P. Combined with our efficient point tripling formula, this method leads scalar multiplication using double bases to achieve about 23% improvement, compared with Jacobian projective coordinates.展开更多
基金The National Natural Science Foundation of China (No.60473029,60673072).
文摘To resist the side chaimel attacks of elliptic curve cryptography, a new fast and secure point multiplication algorithm is proposed. The algorithm is based on a particular kind of addition chains involving only additions, providing a natural protection against side channel attacks. Moreover, the new addition formulae that take into account the specific structure of those chains making point multiplication very efficient are proposed. The point multiplication algorithm only needs 1 719 multiplications for the SAC260 of 160-bit integers. For chains of length from 280 to 260, the proposed method outperforms all the previous methods with a gain of 26% to 31% over double-and add, 16% to22% over NAF, 7% to 13% over4-NAF and 1% to 8% over the present best algorithm--double-base chain.
基金Supported by Natural Science Basic Research Plan in Shaanxi Province of China(2005F28)
文摘This paper gives a comprehensive method to do Elliptic Curve Scalar Multiplication with only x-coordinate. Explicit point operation formulae for all types of defining equations of the curves are derived. For each type of curve, the performance is analyzed. The formulae are applied in Montgomery Ladder to get scalar multiplication algorithm operated with only x-coordinate. The new scalar multiplication has the same security level and computation amount with protected binary scalar multiplication (PBSM) against side channel attack, and has the advantages of higher security and little memory needed.
基金Supported by the National Natural Science Foundation of China(No.90104004) the National 973 High Technology Projects(No.G1998030420)
文摘The key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Muller and Smart proposed two efficient algorithms for point scalar multiplications over even or odd finite fields respectively. This paper reduces the corresponding multiplier by modulo Υk-1 +…+Υ+ 1 and improves the above algorithms. Implementation of our Algorithm 1 in Maple for a given elliptic curve shows that it is at least as twice fast as binary method. By setting up a precomputation table, Algorithm 2, an improved version of Algorithm 1, is proposed. Since the time for the precomputation table can be considered free, Algorithm 2 is about (3/2) log2 q - 1 times faster than binary method for an elliptic curve over
基金Supported by the National 973 High Technology Projects (No. G1998030420)
文摘Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding a suitable small positive integer s such that q^s can be represented as some very sparse φ-polynomial is proposed. If a Normal Basis (NB) or Optimal Normal Basis (ONB) is applied and the precomputations are considered free, our algorithm will cost, on average, about 55% to 80% less than binary method, and about 42% to 74% less than φ-ary method. For some elliptic curves, our algorithm is also taster than Mǖller's algorithm. In addition, an effective algorithm is provided for finding such integer s.
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.
基金supported by the National Natural Science Foundation of China (11961060)the Graduate Research Support of Northwest Normal University (2021KYZZ01032)。
文摘In this paper,we focus on the following coupled system of k-Hessian equations:{S_(k)(λ(D^(2)u))=f_(1)(|x|,-v)in B,S_(k)(λ(D^(2)v))=f2(|x|,-u)in B,u=v=0 on■B.Here B is a unit ball with center 0 and fi(i=1,2)are continuous and nonnegative functions.By introducing some new growth conditions on the nonlinearities f_(1) and f_(2),which are more flexible than the existing conditions for the k-Hessian systems(equations),several new existence and multiplicity results for k-convex solutions for this kind of problem are obtained.
文摘The focal point of this paper is to present the theoretical aspects of the building blocks of the upper bounds of ISD (integer sub-decomposition) method defined by kP = k11P + k12ψ1 (P) + k21P + k22ψ2 (P) with max {|k11|, |k12|} 〈 Ca√n and max{|k21|, |k22|}≤C√, where C=I that uses efficiently computable endomorphisms ψj for j=1,2 to compute any multiple kP of a point P of order n lying on an elliptic curve E. The upper bounds of sub-scalars in ISD method are presented and utilized to enhance the rate of successful computation of scalar multiplication kP. Important theorems that establish the upper bounds of the kernel vectors of the ISD reduction map are generalized and proved in this work. The values of C in the upper bounds, that are greater than 1, have been proven in two cases of characteristic polynomials (with degree 1 or 2) of the endomorphisms. The upper bound of ISD method with the case of the endomorphism rings over an integer ring Z results in a higher rate of successful computations kP. Compared to the case of endomorphism rings, which is embedded over an imaginary quadratic field Q = [4-D]. The determination of the upper bounds is considered as a key point in developing the ISD elliptic scalar multiplication technique.
基金Supported by the National Natural Science Foundation of China (60573031)
文摘Scalar multiplication [n]P is the kernel and the most time-consuming operation in elliptic curve cryptosystems. In order to improve scalar multiplication, in this paper, we propose a tripling algorithm using Lopez and Dahab projective coordinates, in which there are 3 field multiplications and 3 field squarings less than that in the Jacobian projective tripling algorithm. Furthermore, we map P to(φε^-1(P), and compute [n](φε^-1(P) on elliptic curve Eε, which is faster than computing [n]P on E, where φε is an isomorphism. Finally we calculate (φε([n]φε^-1(P)) = [n]P. Combined with our efficient point tripling formula, this method leads scalar multiplication using double bases to achieve about 23% improvement, compared with Jacobian projective coordinates.