期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Existence and numerical approximation of a solution to frictional contact problem for electro-elastic materials
1
作者 Othman Baiz EL-Hassan Benkhira Rachid Fakhar 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期201-219,共19页
In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coul... In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established. 展开更多
关键词 piezoelectric material frictional contact variational Inequality fixed point process finite element method error estimation iteration method
下载PDF
Existence results for unilateral contact problem with friction of thermo-electro-elasticity 被引量:1
2
作者 H.BENAISSA EL-H.ESSOUFI R.FAKHAR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第7期911-926,共16页
This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-el... This work studies a mathematical model describing the static process of contact between a piezoelectric body and a thermally-electrically conductive foundation. The behavior of the material is modeled with a thermo-electro-elastic constitutive law. The contact is described by Signorini's conditions and Tresca's friction law including the electrical and thermal conductivity conditions. A variational formulation of the model in the form of a coupled system for displacements, electric potential, and temperature is de- rived. Existence and uniqueness of the solution are proved using the results of variational inequalities and a fixed point theorem. 展开更多
关键词 static frictional contozt thermo-piezoelectric material Signorini's condi-tion Tresca's friction frictional heat generation variational inequality fixed point process
下载PDF
State-of-the-art Technologies and Kinematical Analysis for One-Stop Finishing of φ300 mm Si Wafer
3
作者 Hiroshi EDA Jun SHIMIZU 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期300-301,共2页
This research has successfully developed an advance d manufacturing system for 300mm silicon wafer,using fixed abrasive instead o f conventional free slurry,to provide a totally integrated solution for achievi ng the ... This research has successfully developed an advance d manufacturing system for 300mm silicon wafer,using fixed abrasive instead o f conventional free slurry,to provide a totally integrated solution for achievi ng the surface roughness Ra<1 nm(Ry<5~6 nm) and the global flatness<O.2μm /300 mm.In addition to high throughput rate,this system significantly reduc es the total energy consumption by 70%,compared with the current process used for 200mm Si wafer.This paper describes the principle of material removal,st ate-of-the-art technologies and kinematical analysis for one-stop finishing o f 300mm Si wafer by fixed abrasive process. 展开更多
关键词 Si wafer fixed abrasive process POSITIONING alignm ent ductile grinding polishing-like finishing
下载PDF
Mass transfer mechanisms in fixed-bed adsorption of erythromycin 被引量:2
4
作者 Ying SUN Jiawen ZHU +2 位作者 Kui CHEN Sheng ZHU Jie XU 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2008年第4期353-360,共8页
The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performa... The equilibrium and kinetic characteristics of the adsorption of erythromycin to Sepabeads SP825 were determined.The equilibrium data in a batch system was well described by a Langmuir isotherm.The separation performance was investigated in a fixed-bed system with respect to the adsorption superficial velocity,ionic strength and pH.A mathematical model was used to simulate the mass transfer mechanism,taking film mass transfer,pore diffusion and axial dispersion into account.The model predictions were consistent with the experi-mental data and were consequently used to determine the mass transfer coefficients. 展开更多
关键词 fixed-bed adsorption superficial velocity ionic strength erythromycin However investigations on the parameters governing the performance of this technology are still scarce.In the present work a polymeric and porous resin Sepabeads SP825 resin was used for its higher adsorption efficiency compared with the resins reported.The equilib-rium capacity of Sepabeads SP825 for EM in a batch system was established using a Langmuir isotherm.The effects of superficial velocity ionic strength and pH on the adsorption process were determined from the results of fixed bed experiments.And a model of the purification process was used to simulate the mass transfer mechanism which has taken film mass transfer pore diffusion and axial dispersion into account.The experimental adsorp-tion measurements were compared to the results calcu-lated from the model.The completion of these studies provide some essential parameters which are required in order to design a successful purification process and better understand the fundamentals of these process.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部