An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback...An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback of the turbulence region induced by obstacles for combustion process. It can be seen from the experimental results that the maximum explosion pressure can increase by 20%, the maximum rate of pressure rise can increase by 10 times and the flame propagation velocity can increase by 20 times when obstacles are present.展开更多
In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be o...In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be obtained using very expensive air measurement instruments. The proposed method to predict ) for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extrac- tion meaningful information (flame intensity and bright- ness)from flame images, and c) learning these information (image features) with ANNs and estimate 2. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co- occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.展开更多
High temperature air combustion (HTAC) is an attractive technology of saving energy and controlling environment. The mathematical models of turbulent jet flame under the highly preheated air combustion condition are c...High temperature air combustion (HTAC) is an attractive technology of saving energy and controlling environment. The mathematical models of turbulent jet flame under the highly preheated air combustion condition are conducted in the paper. The mixture fraction/probability density function model is employed. The results show that the maximum flame temperature is decreased, the temperature in the HTAC furnace is more uniform than that in the conventional furnace, and the NO x emission is low. The numerical results are partially validated by some experimental measurements.展开更多
To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods w...To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed.展开更多
Turbulent non-premixed combustion of gaseous fuels is of importance for many technical applications, especially for the steel and refractory industry. Accurate turbulent flow and temperature fields are of major import...Turbulent non-premixed combustion of gaseous fuels is of importance for many technical applications, especially for the steel and refractory industry. Accurate turbulent flow and temperature fields are of major importance in order to predict details on the concentration fields. The performances of the GRI-Mech 3.0 and the Jones and Lindstedt mechanisms are compared. Detailed chemistry is included with the GRI-Mech 3.0 and J-L kinetic mechanisms in combination with the laminar flamelet combustion model. The combustion system selected for this comparison is a confined non-premixed methane flame surrounded by co-flowing air The simulation results are compared with experimental data of Lewis and Smoot (2001).展开更多
Chromium has been identified as a carcinogenic metal. Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation...Chromium has been identified as a carcinogenic metal. Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation. Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed. Nine chromium compounds and fifty eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius’s Law for known ones. The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics. It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame. The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a展开更多
文摘An experimental study on acceleration mechanism of flame propagation of propane-air mixture in ducts with obstacles was conducted. The acceleration mechanism of flame propagation is mainly due to the positive feedback of the turbulence region induced by obstacles for combustion process. It can be seen from the experimental results that the maximum explosion pressure can increase by 20%, the maximum rate of pressure rise can increase by 10 times and the flame propagation velocity can increase by 20 times when obstacles are present.
基金supported by The Scientific and Technological Research Council of Turkey(TUBITAK,Project number:114M116)and MIMSAN AS
文摘In this study, the relationship between the visual information gathered from the flame images and the excess air factor 2 in coal burners is investigated. In conventional coal burners the excess air factor 2. can be obtained using very expensive air measurement instruments. The proposed method to predict ) for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extrac- tion meaningful information (flame intensity and bright- ness)from flame images, and c) learning these information (image features) with ANNs and estimate 2. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co- occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.
文摘High temperature air combustion (HTAC) is an attractive technology of saving energy and controlling environment. The mathematical models of turbulent jet flame under the highly preheated air combustion condition are conducted in the paper. The mixture fraction/probability density function model is employed. The results show that the maximum flame temperature is decreased, the temperature in the HTAC furnace is more uniform than that in the conventional furnace, and the NO x emission is low. The numerical results are partially validated by some experimental measurements.
基金Supported by the National Natural Science Foundation of China(50804038)
文摘To explore the premixed methane-air flame microstructure behavior and the flame-flow interaction, the premixed methane/air flame was studied in a semi-vented chamber. A high speed camera and schlieren images methods were used to record the processes of interaction between rare- faction wave and flame. Meanwhile, a pressure sensor was utilized to catch the pressure variation in the process of flame propagation. The experiment results showed that the interference of rarefaction wave on flame caused the flame front structure change, which led to the flame transition from lami- nar to turbulent quickly. The rarefaction wave intervened in the flame by turning the flame front sur- face into dentiform structure. The violent turbulent combustion began to appear in part of the flame front and spreaded to the whole flame front surface. The rarefaction also decreased the flame propa- gation speed.
文摘Turbulent non-premixed combustion of gaseous fuels is of importance for many technical applications, especially for the steel and refractory industry. Accurate turbulent flow and temperature fields are of major importance in order to predict details on the concentration fields. The performances of the GRI-Mech 3.0 and the Jones and Lindstedt mechanisms are compared. Detailed chemistry is included with the GRI-Mech 3.0 and J-L kinetic mechanisms in combination with the laminar flamelet combustion model. The combustion system selected for this comparison is a confined non-premixed methane flame surrounded by co-flowing air The simulation results are compared with experimental data of Lewis and Smoot (2001).
文摘Chromium has been identified as a carcinogenic metal. Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation. Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed. Nine chromium compounds and fifty eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius’s Law for known ones. The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics. It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame. The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a